Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Surface Electrostatics Govern the Emulsion Stability of Biomolecular Condensates.

Welsh, T. J., Krainer, G., Espinosa, J. R., Joseph, J. A., Sridhar, A., Jahnel, M., et al. (2022). Surface Electrostatics Govern the Emulsion Stability of Biomolecular Condensates. Nano letters, 22(2), 612-621. doi:10.1021/acs.nanolett.1c03138.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Welsh, Timothy J, Autor
Krainer, Georg, Autor
Espinosa, Jorge R, Autor
Joseph, Jerelle A, Autor
Sridhar, Akshay, Autor
Jahnel, Marcus1, Autor           
Arter, William E, Autor
Saar, Kathrin, Autor
Alberti, Simon1, Autor           
Collepardo-Guevara, Rosana, Autor
Knowles, Tuomas P J, Autor
Affiliations:
1Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society, ou_2340692              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Liquid-liquid phase separation underlies the formation of biological condensates. Physically, such systems are microemulsions that in general have a propensity to fuse and coalesce; however, many condensates persist as independent droplets in the test tube and inside cells. This stability is crucial for their function, but the physicochemical mechanisms that control the emulsion stability of condensates remain poorly understood. Here, by combining single-condensate zeta potential measurements, optical microscopy, tweezer experiments, and multiscale molecular modeling, we investigate how the nanoscale forces that sustain condensates impact their stability against fusion. By comparing peptide-RNA (PR25:PolyU) and proteinaceous (FUS) condensates, we show that a higher condensate surface charge correlates with a lower fusion propensity. Moreover, measurements of single condensate zeta potentials reveal that such systems can constitute classically stable emulsions. Taken together, these results highlight the role of passive stabilization mechanisms in protecting biomolecular condensates against coalescence.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2022-01-26
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1021/acs.nanolett.1c03138
Anderer: cbg-8275
PMID: 35001622
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nano letters
  Andere : Nano Lett
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 22 (2) Artikelnummer: - Start- / Endseite: 612 - 621 Identifikator: -