Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  DeepCEST: fast mapping of 7T CEST MRI parameters with uncertainty quantification

Hunger, L., Rajput, J., Fabian, M., Mennecke, A., Glang, F., Schmitt, M., et al. (2022). DeepCEST: fast mapping of 7T CEST MRI parameters with uncertainty quantification. In 24. Jahrestagung der Deutschen Sektion der ISMRM (DS-ISMRM 2022) (pp. 10-11).

Item is

Basisdaten

einblenden: ausblenden:
Genre: Meeting Abstract

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Hunger, L, Autor
Rajput, J, Autor
Fabian, MS, Autor
Mennecke, AB, Autor
Glang, FM1, Autor                 
Schmitt, M, Autor
Dörfler, A, Autor
Maier, A, Autor
Zaiss, M1, Autor                 
Affiliations:
1Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497796              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Introduction To make 7T CEST MRI more available for radiologists, we developed a deepCEST pipeline for 7T MRI that predicts CEST contrasts from just one scan with robustness against B1 inhomogeneities. The pipeline includes an uncertainty quantification and a confidence map to evaluate the quality of the predictions. The proposed approach results in a reduction of 50% of the measurement time and delivers the predicted CEST contrast with in 1 sec. Methods The input data for a neural network (NN) consisted of 7T in vivo raw Z-spectra of a single B1 level, and a B1 map. The 7T raw data was acquired using the 3D snapshot GRE MIMOSA CEST3 at a Siemens MAGNETOM 7T scanner. These inputs were mapped voxel-wise on target data consisting of Lorentzian amplitudes conventionally generated by 5-pool-Lorentzian fitting performed on normalized, denoised, B0- and B1-corrected Z-spectra. The network consisted of two fully connected hidden layers with RELU activation and was trained with Gaussian negative log likelihood loss. The output layer consisted of 10 nodes with linear activation to obtain the amplitudes and uncertainty of the 5-pool Lorentzian fit. Results Figure 1a, b, d and e shows the Lorentzian fit and the prediction of the amide and rNOE contrast in a tumor patient. Figure 1c, f shows the segmented uncertainty map over all contrasts with a threshold of 10%. The first row shows the predictions and uncertainty for the measurement made with a bad shim. Such a strong B0 shift was not part of the training distribution. Therefore, the predictions and fits do not match. Consequently, the NN outputs a high uncertainty for these voxels (Fig. 1c). In the second row of (Fig. 1), the Z-spectra of the patient was centered, resulting in NN predictions that agree well with the fit, and only a low uncertainty is yielded. Discussion The deepCEST approach has already shown very promising results for 3T, the clear advantage of 7T data is the better SNR and higher spectral resolution. The 7T deepCEST approach uses only one B1 level, this saves about 50% of scan time (now 6:42 min), but still predicts accurately with low uncertainty (Fig. 2) and provides both B0- and B1-corrected homogeneous CEST contrast.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2022-09
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: -
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: 24. Jahrestagung der Deutschen Sektion der ISMRM (DS-ISMRM 2022)
Veranstaltungsort: Aachen, Germany
Start-/Enddatum: 2022-09-21 - 2022-09-24

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: 24. Jahrestagung der Deutschen Sektion der ISMRM (DS-ISMRM 2022)
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: - Artikelnummer: V004 Start- / Endseite: 10 - 11 Identifikator: ISBN: 978-3-948023-28-7