English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  A semi-small decomposition of the Chow ring of a matroid

Braden, T., Huh, J., Matherne, J. P., Proudfoot, N., & Wang, B. (2022). A semi-small decomposition of the Chow ring of a matroid. Advances in Mathematics, 409: 108646. doi:10.1016/j.aim.2022.108646.

Item is

Files

show Files
hide Files
:
2002.03341.pdf (Preprint), 530KB
 
File Permalink:
-
Name:
2002.03341.pdf
Description:
File downloaded from arXiv at 2022-09-19 14:46
OA-Status:
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
Braden-Huh-Matherne-Proudfoot-Wang_A semi-small decomposition of the Chow ring of a matroid_2022.pdf (Publisher version), 718KB
 
File Permalink:
-
Name:
Braden-Huh-Matherne-Proudfoot-Wang_A semi-small decomposition of the Chow ring of a matroid_2022.pdf
Description:
-
OA-Status:
Visibility:
Restricted ( Max Planck Society (every institute); )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
https://doi.org/10.1016/j.aim.2022.108646 (Publisher version)
Description:
-
OA-Status:
Not specified
Description:
-
OA-Status:
Green

Creators

show
hide
 Creators:
Braden, Tom, Author
Huh, June, Author
Matherne, Jacob P.1, Author           
Proudfoot, Nicholas, Author
Wang, Botong, Author
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: Mathematics, Algebraic Geometry, Combinatorics
 Abstract: We give a semi-small orthogonal decomposition of the Chow ring of a matroid
M. The decomposition is used to give simple proofs of Poincar\'e duality, the
hard Lefschetz theorem, and the Hodge-Riemann relations for the Chow ring,
recovering the main result of [AHK18]. We also show that a similar semi-small
orthogonal decomposition holds for the augmented Chow ring of M.

Details

show
hide
Language(s): eng - English
 Dates: 2022
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 2002.03341
DOI: 10.1016/j.aim.2022.108646
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Advances in Mathematics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Elsevier
Pages: - Volume / Issue: 409 Sequence Number: 108646 Start / End Page: - Identifier: -