English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Higher depth false modular forms

Bringmann, K., Kaszián, J., Milas, A., & Nazaroglu, C. (2023). Higher depth false modular forms. Communications in Contemporary Mathematics, 25(7): 2250043. doi:10.1142/S0219199722500432.

Item is

Files

hide Files
:
2109.00394.pdf (Preprint), 529KB
 
File Permalink:
-
Name:
2109.00394.pdf
Description:
File downloaded from arXiv at 2022-09-19 16:15
OA-Status:
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
Bringmann-Kaszian-Milas-Nazaroglu_Higher depth false modular forms_2023.pdf (Publisher version), 645KB
 
File Permalink:
-
Name:
Bringmann-Kaszian-Milas-Nazaroglu_Higher depth false modular forms_2023.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Mathematics, MBMT; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

hide
Locator:
https://dx.doi.org/10.1142/S0219199722500432 (Publisher version)
Description:
-
OA-Status:
Not specified
Description:
-
OA-Status:
Green

Creators

hide
 Creators:
Bringmann, Kathrin, Author
Kaszián, Jonas1, Author           
Milas, Antun, Author
Nazaroglu, Caner, Author
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

hide
Free keywords: Mathematics, Number Theory, High Energy Physics - Theory, Representation Theory
 Abstract: False theta functions are functions that are closely related to classical
theta functions and mock theta functions. In this paper, we study their modular
properties at all ranks by forming modular completions analogous to modular
completions of indefinite theta functions of any signature and thereby develop
a structure parallel to the recently developed theory of higher depth mock
modular forms. We then demonstrate this theoretical base on a number of
examples up to depth three coming from characters of modules for the vertex
algebra $W^0(p)_{A_n}$, $1 \leq n \leq 3$, and from $\hat{Z}$-invariants of
$3$-manifolds associated with gauge group $\mathrm{SU}(3)$.

Details

hide
Language(s): eng - English
 Dates: 2023
 Publication Status: Issued
 Pages: 53
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 2109.00394
DOI: 10.1142/S0219199722500432
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

hide
Title: Communications in Contemporary Mathematics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: World Scientific
Pages: - Volume / Issue: 25 (7) Sequence Number: 2250043 Start / End Page: - Identifier: -