English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Mechanism of the Aryl–F Bond-Forming Step from Bi(V) Fluorides

Planas, O., Peciukenas, V., Leutzsch, M., Nöthling, N., Pantazis, D. A., & Cornella, J. (2022). Mechanism of the Aryl–F Bond-Forming Step from Bi(V) Fluorides. Journal of the American Chemical Society, 144(32), 14489-14504. doi:10.1021/jacs.2c01072.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Planas, Oriol1, Author           
Peciukenas, Vytautas1, Author           
Leutzsch, Markus2, Author           
Nöthling, Nils3, Author           
Pantazis, Dimitrios A.4, Author           
Cornella, Josep1, Author           
Affiliations:
1Research Group Cornellà, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2466693              
2Service Department Farès (NMR), Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1445623              
3Service Department Lehmann (EMR), Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1445625              
4Research Group Pantazis, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2541711              

Content

show
hide
Free keywords: -
 Abstract: In this article, we describe a combined experimental and theoretical mechanistic investigation of the C(sp2)–F bond formation from neutral and cationic high-valent organobismuth(V) fluorides, featuring a dianionic bis-aryl sulfoximine ligand. An exhaustive assessment of the substitution pattern in the ligand, the sulfoximine, and the reactive aryl on neutral triarylbismuth(V) difluorides revealed that formation of dimeric structures in solution promotes facile Ar–F bond formation. Noteworthy, theoretical modeling of reductive elimination from neutral bismuth(V) difluorides agrees with the experimentally determined kinetic and thermodynamic parameters. Moreover, the addition of external fluoride sources leads to inactive octahedral anionic Bi(V) trifluoride salts, which decelerate reductive elimination. On the other hand, a parallel analysis for cationic bismuthonium fluorides revealed the crucial role of tetrafluoroborate anion as fluoride source. Both experimental and theoretical analyses conclude that C–F bond formation occurs through a low-energy five-membered transition-state pathway, where the F anion is delivered to a C(sp2) center, from a BF4 anion, reminiscent of the Balz–Schiemann reaction. The knowledge gathered throughout the investigation permitted a rational assessment of the key parameters of several ligands, identifying the simple sulfone-based ligand family as an improved system for the stoichiometric and catalytic fluorination of arylboronic acid derivatives.

Details

show
hide
Language(s): eng - English
 Dates: 2022-01-272022-08-032022-08-17
 Publication Status: Published in print
 Pages: 16
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1021/jacs.2c01072
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of the American Chemical Society
  Other : JACS
  Abbreviation : J. Am. Chem. Soc.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, DC : American Chemical Society
Pages: - Volume / Issue: 144 (32) Sequence Number: - Start / End Page: 14489 - 14504 Identifier: ISSN: 0002-7863
CoNE: https://pure.mpg.de/cone/journals/resource/954925376870