日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  Convolutional neural network prediction of molecular properties for aerosol chemistry and health effects

Krüger, M., Wilson, J., Wietzoreck, M., Bandowe, B. A. M., Lammel, G., Schmidt, B., Pöschl, U., & Berkemeier, T. (2022). Convolutional neural network prediction of molecular properties for aerosol chemistry and health effects. Natural Sciences, 2. doi:10.1002/ntls.20220016.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-000B-1F0B-8 版のパーマリンク: https://hdl.handle.net/21.11116/0000-000E-031E-E
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:
非表示:
説明:
-
OA-Status:
Gold

作成者

表示:
非表示:
 作成者:
Krüger, Matteo1, 著者           
Wilson, Jake1, 著者           
Wietzoreck, Marco1, 著者           
Bandowe, Benjamin A. Musa1, 著者           
Lammel, Gerhard1, 著者           
Schmidt, Bertil, 著者
Pöschl, Ulrich1, 著者           
Berkemeier, Thomas1, 著者           
所属:
1Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826290              

内容説明

表示:
非表示:
キーワード: -
 : Rethinking Basic Science
 要旨: Quinones are chemical compounds commonly found in air particulate matter (PM). Their redox activity can generate reactive oxygen species (ROS) and contribute to the oxidative potential (OP) of PM leading to adverse health effects of aerosols. The quinones' OP and ability to form ROS are linked to their reduction potential (RP, measured in volts), a metric for the tendency to lose electrons in redox reactions. Here, we use convolutional neural networks (CNN) as quantitative structure-activity relationship (QSAR) models to relate the one-electron RP of quinones to their molecular structure. For CNN training and testing, a data set of more than 100,000 quinones with associated RP values derived from density functional theory calculations was encoded in simplified molecular input line entry system (SMILES). The best performing CNN model achieved a root mean square error (RMSE) of 0.115 V for an independent test data set and outperformed linear regression models fitted on common molecular descriptors (≥ 0.140 V RMSE). Augmentation methods were newly adapted or applied to support CNN training with smaller data sets, improving RMSE by up to approximately 37% for a data set of 321 molecules. Adjusted for solvent effects, the CNN-derived RP predictions showed good agreement with experimental data. Using the newly developed method, we identified a subset of atmospherically relevant quinones that are likely to have a high OP and play a role in aerosol health effects, which remains to be further elucidated by experimental studies. We suggest to use the presented machine learning approach in further investigations of atmospheric aerosol chemistry and health effects as well as other studies that require a target-oriented screening of the properties and effects of large classes of substances.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2022-08-18
 出版の状態: オンラインで出版済み
 ページ: 14
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): DOI: 10.1002/ntls.20220016
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Natural Sciences
  省略形 : Nat. Sci.
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: Weinheim : Wiley-VCH
ページ: - 巻号: 2 通巻号: - 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): CoNE: https://pure.mpg.de/cone/journals/resource/2698-6248