Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  The Developmental Trajectory of Learning and Exploration

Giron, A., Ciranka, S., Schulz, E., van den Bos, W., Ruggeri, A., Meder, B., et al. (2022). The Developmental Trajectory of Learning and Exploration. In Budapest CEU Conference on Cognitive Development (BCCCD 2022) (pp. 203).

Item is

Basisdaten

ausblenden:
Genre: Meeting Abstract

Externe Referenzen

ausblenden:
externe Referenz:
https://www.bcccd.org/down/bcccd_final_program_2022.pdf (Zusammenfassung)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

ausblenden:
 Urheber:
Giron, A, Autor
Ciranka, S, Autor
Schulz, E1, Autor           
van den Bos, W, Autor
Ruggeri, A, Autor
Meder, B, Autor
Wu, CM, Autor           
Affiliations:
1Research Group Computational Principles of Intelligence, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_3189356              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Learning from past experiences helps orient the exploration of unknown environments. Yet how we learn and explore changes over the lifespan, corresponding to different stages of cognitive development and different lifespan-rational goals. In this work, we analyze data from n=281 participants between the ages of 5 and 55, to model age-related changes in exploration and generalization. We use a spatially-correlated multi-armed bandit task (Wu et al,. 2018) that allows us to simultaneously model the separate and recoverable contri- butions of reward generalization (i.e., predicting novel outcomes), and both uncertainty- directed and random exploration. Through a combination of behavioral and model-based analyses, we show that exploration becomes more efficient over age, with increases in generalization, while both directed and random exploration decrease sharply in childhood. Counterfactual simulations also reveal that participants’ parameters move towards and reach the optimal frontier of learning strategies in adulthood. Furthermore, we compare the age-related trajectory of human parameter estimates to a stochastic optimization algorithm, as a rational comparison to how the parameters of our model (generalization, directed exploration, and random exploration) should optimally develop over time. These results reveal that people generalize less and exhibit less uncertainty-directed exploration compared to the optimal trajectory. Since both generalization and directed exploration are computationally costly, people may develop in a resource-rational manner, trading off performance against computational costs. our work provides important insights into the developmental trajectory of human learning, providing a concrete empirical comparison to commonly used analogies of stochastic optimization in developmental psychology.

Details

ausblenden:
Sprache(n):
 Datum: 2022-01
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: -
 Art des Abschluß: -

Veranstaltung

ausblenden:
Titel: Budapest CEU Conference on Cognitive Development (BCCCD 2022)
Veranstaltungsort: Budapest, Hungary
Start-/Enddatum: 2022-01-10 - 2022-01-14

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Budapest CEU Conference on Cognitive Development (BCCCD 2022)
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: - Artikelnummer: A-0136 Start- / Endseite: 203 Identifikator: -