Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Single Particle Imaging with FEL Using Photon Correlations

von Ardenne, B., & Grubmüller, H. (2020). Single Particle Imaging with FEL Using Photon Correlations. In T. Salditt, A. Egner, & D. R. Luke (Eds.), Nanoscale Photonic Imaging (pp. 435-455). Cham: Springer. doi:10.1007/978-3-030-34413-9_16.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
von-Ardenne_2020_Springer_book_chapter.pdf (Verlagsversion), 864KB
Name:
von-Ardenne_2020_Springer_book_chapter.pdf
Beschreibung:
-
OA-Status:
Sonstiges
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
von Ardenne, B, Autor
Grubmüller, H.1, Autor                 
Affiliations:
1Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society, Göttingen, DE, ou_3350132              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Scattering experiments with femtosecond high-intensity free-electron
laser pulses provide a new route to macromolecular structure determination without
the need for crystallization at low material usage. In these experiments, the X-ray
pulses are scattered with high repetition on a stream of identical single biomolecules
and the scattered photons are recorded on a pixelized detector. The main challenges
are the unknown random orientation of the molecule in each shot and the extremely
low signal to noise ratio due to the very low expected photon count per scattering
image, typically well below the number of over 100 photons required by available
analysis methods. The latter currently limits the scattering experiments to nano-
crystals or larger virus particles, but the ultimate goal remains to retrieve the atomic
structure of single biomolecules. Here, we use photon correlations to overcome the
issue with low photon counts and present an approach that can determine the molec-
ular structure de novo from as few as three coherently scattered photons per image.
We further validate the method with a small protein (46 residues), show that near-
atomic resolution of 3.3 Å is within experimental reach and demonstrate structure
determination in the presence of isotropic noise from various sources, indicating that
the number of disordered solvent molecules attached to the macromolecular surface
should be kept at a minimum. Our correlation method allows to infer structure from
images containing multiple particles, potentially opening the method to other types
of experiments such as fluctuation X-ray scattering (FXS).

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-10-122020-12-12
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1007/978-3-030-34413-9_16
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nanoscale Photonic Imaging
Genre der Quelle: Buch
 Urheber:
Salditt, Tim, Herausgeber
Egner, Alexander, Herausgeber
Luke, D. Russel, Herausgeber
Affiliations:
-
Ort, Verlag, Ausgabe: Cham : Springer
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: 435 - 455 Identifikator: DOI: 10.1007/978-3-030-34413-9
ISBN: 978-3-030-34415-3