English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
EndNote (UTF-8)
 
DownloadE-Mail
  VICE: Variational Interpretable Concept Embeddings

Muttenthaler, L., Zheng, C. Y., McClure, P., Vandermeulen, R. A., Hebart, M. N., & Pereira, F. (2022). VICE: Variational Interpretable Concept Embeddings. arXiv. doi:10.48550/arXiv.2205.00756.

Item is

Files

hide Files
:
Muttenthaler_pre.pdf (Preprint), 41MB
Name:
Muttenthaler_pre.pdf
Description:
-
OA-Status:
Green
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

hide
 Creators:
Muttenthaler, Lukas1, Author           
Zheng, Charles Y.2, Author
McClure, Patrick3, Author
Vandermeulen, Robert A.4, Author
Hebart, Martin N.1, Author                 
Pereira, Francisco2, Author
Affiliations:
1Max Planck Research Group Vision and Computational Cognition, MPI for Human Cognitive and Brain Sciences, Max Planck Society, ou_3158378              
2Machine Learning Team, FMRI FacilityNational Institute of Mental HealthBethesda, MD, US, ou_persistent22              
3Department of Computer ScienceNaval Postgraduate SchoolMonterey, CA, USA, ou_persistent22              
4Technische Universität Berlin, Berlin Institute for the Foundations of Learning and Data, ou_persistent22              

Content

hide
Free keywords: -
 Abstract: A central goal in the cognitive sciences is the development of numerical models for mental representations of object concepts. This paper introduces Variational Interpretable Concept Embeddings (VICE), an approximate Bayesian method for embedding object concepts in a vector space using data collected from humans in an odd-one-out triplet task. VICE uses variational inference to obtain sparse, non-negative representations of object concepts with uncertainty estimates for the embedding values. These estimates are used to automatically select the dimensions that best explain the data. We derive a PAC learning bound for VICE that can be used to estimate generalization performance or determine sufficient sample size in experimental design. VICE rivals or outperforms its predecessor, SPoSE, at predicting human behavior in the odd-one-out triplet task. Furthermore, VICE's object representations are more reproducible and consistent across random initializations.

Details

hide
Language(s):
 Dates: 2022-05-30
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.48550/arXiv.2205.00756
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

hide
Title: arXiv
Source Genre: Web Page
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -