Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  More than the sum of its parts

Fischer, J. (2022). More than the sum of its parts. PhD Thesis, Universität des Saarlandes, Saarbrücken. doi:10.22028/D291-37024.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Hochschulschrift
Untertitel : pattern mining neural networks, and how they complement each other

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
OA-Status:
Grün

Urheber

einblenden:
ausblenden:
 Urheber:
Fischer, Jonas1, 2, Autor           
Vreeken, Jilles1, Ratgeber           
Weikum, Gerhard1, Gutachter           
Parthasarathy, Srinivasan3, Gutachter
Affiliations:
1Databases and Information Systems, MPI for Informatics, Max Planck Society, ou_24018              
2International Max Planck Research School, MPI for Informatics, Max Planck Society, Campus E1 4, 66123 Saarbrücken, DE, ou_1116551              
3External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: In this thesis we explore pattern mining and deep learning. Often seen as orthogonal, we show that these fields complement each other and propose to combine them to gain from each other’s strengths. We, first, show how to efficiently discover succinct and non-redundant sets of patterns that provide insight into data beyond conjunctive statements. We leverage the interpretability of such patterns to unveil how and which information flows through neural networks, as well as what characterizes their decisions. Conversely, we show how to combine continuous optimization with pattern discovery, proposing a neural network that directly encodes discrete patterns, which allows us to apply pattern mining at a scale orders of magnitude larger than previously possible. Large neural networks are, however, exceedingly expensive to train for which ‘lottery tickets’ – small, well-trainable sub-networks in randomly initialized neural networks – offer a remedy. We identify theoretical limitations of strong tickets and overcome them by equipping these tickets with the property of universal approximation. To analyze whether limitations in ticket sparsity are algorithmic or fundamental, we propose a framework to plant and hide lottery tickets. With novel ticket benchmarks we then conclude that the limitation is likely algorithmic, encouraging further developments for which our framework offers means to measure progress.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022-07-2820222022
 Publikationsstatus: Erschienen
 Seiten: 250 p.
 Ort, Verlag, Ausgabe: Saarbrücken : Universität des Saarlandes
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: BibTex Citekey: Fischerphd2022
DOI: 10.22028/D291-37024
URN: nbn:de:bsz:291--ds-370240
Anderer: hdl:20.500.11880/33893
 Art des Abschluß: Doktorarbeit

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: