日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  Outer membrane beta-barrel structure prediction through the lens of AlphaFold2

Topitsch, A., Schwede, T., & Pereira, J. (submitted). Outer membrane beta-barrel structure prediction through the lens of AlphaFold2.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-000B-3D80-0 版のパーマリンク: https://hdl.handle.net/21.11116/0000-000B-3D81-F
資料種別: Preprint

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Topitsch, A, 著者
Schwede, T, 著者
Pereira, J1, 著者                 
所属:
1External Organizations, ou_persistent22              

内容説明

表示:
非表示:
キーワード: -
 要旨: Most proteins found in the outer membrane of Gram-negative bacteria share a common domain: the transmembrane beta-barrel. These outer membrane -barrels (OMBBs) occur in multiple sizes, and different families with a wide range of functions evolved independently by amplification from a pool of homologous ancestral beta-beta-hairpins. This is part of the reason why predicting their three-dimensional (3D) structure, especially by homology modeling, is a major challenge. Recently, DeepMind's AlphaFold v2 (AF2) became the first structure prediction method to reach close-to-experimental atomic accuracy in CASP even for difficult targets. However, membrane proteins, especially OMBBs, were not abundant during its training, raising the question of how accurate the predictions are for these families. In this study, we assessed the performance of AF2 in the prediction of OMBBs of various topologies using an in-house-developed tool for the analysis of OMBB 3D structures, barrOs. In agreement with previous studies on other membrane protein classes, our results indicate that AF2 predicts OMBB structures at high accuracy independently of the use of templates, even for novel topologies absent from the training set. These results provide confidence on the models generated by AF2 and open the door to the structural elucidation of novel OMBB topologies identified in high-throughput OMBB annotation studies.

資料詳細

表示:
非表示:
言語:
 日付: 2022-10
 出版の状態: 投稿済み
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): DOI: 10.1101/2022.10.09.511469
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物

表示: