Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Identification of spatial patterns with maximum association between power of resting state neural oscillations and trait anxiety

Vidaurre, C., Nikulin, V. V., & Herrojo Ruiz, M. (2023). Identification of spatial patterns with maximum association between power of resting state neural oscillations and trait anxiety. Neural Computing & Applications, 35(8), 5737-5749. doi:10.1007/s00521-022-07847-5.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Dateien

ausblenden: Dateien
:
Vidaurre_2022.pdf (Verlagsversion), 2MB
Name:
Vidaurre_2022.pdf
Beschreibung:
-
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Vidaurre, Carmen1, 2, 3, Autor
Nikulin, Vadim V.4, 5, Autor                 
Herrojo Ruiz, Maria5, 6, Autor
Affiliations:
1Neuroengineering Group, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain, ou_persistent22              
2Basque Foundation for Science, Bilbao, Spain, ou_persistent22              
3Statistics, Informatics and Mathematics Department, Public University of Navarre, Spain, ou_persistent22              
4Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society, ou_634549              
5Institute of Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia, ou_persistent22              
6Department of Psychology, Goldsmiths, University of London, United Kingdom, ou_persistent22              

Inhalt

ausblenden:
Schlagwörter: Affective interface; Affective neurofeedback; Anxiety; EEG/MEG oscillations; Emotion neurofeedback; Supervised spatial patterns
 Zusammenfassung: Anxiety affects approximately 5-10% of the adult population worldwide, placing a large burden on the health systems. Despite its omnipresence and impact on mental and physical health, most of the individuals affected by anxiety do not receive appropriate treatment. Current research in the field of psychiatry emphasizes the need to identify and validate biological markers relevant to this condition. Neurophysiological preclinical studies are a prominent approach to determine brain rhythms that can be reliable markers of key features of anxiety. However, while neuroimaging research consistently implicated prefrontal cortex and subcortical structures, such as amygdala and hippocampus, in anxiety, there is still a lack of consensus on the underlying neurophysiological processes contributing to this condition. Methods allowing non-invasive recording and assessment of cortical processing may provide an opportunity to help identify anxiety signatures that could be used as intervention targets. In this study, we apply Source-Power Comodulation (SPoC) to electroencephalography (EEG) recordings in a sample of participants with different levels of trait anxiety. SPoC was developed to find spatial filters and patterns whose power comodulates with an external variable in individual participants. The obtained patterns can be interpreted neurophysiologically. Here, we extend the use of SPoC to a multi-subject setting and test its validity using simulated data with a realistic head model. Next, we apply our SPoC framework to resting state EEG of 43 human participants for whom trait anxiety scores were available. SPoC inter-subject analysis of narrow frequency band data reveals neurophysiologically meaningful spatial patterns in the theta band (4-7 Hz) that are negatively correlated with anxiety. The outcome is specific to the theta band and not observed in the alpha (8-12 Hz) or beta (13-30 Hz) frequency range. The theta-band spatial pattern is primarily localised to the superior frontal gyrus. We discuss the relevance of our spatial pattern results for the search of biomarkers for anxiety and their application in neurofeedback studies.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2021-11-162022-09-142022-10-012023
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1007/s00521-022-07847-5
Anderer: epub 2022
PMID: 36212215
PMC: PMC9525925
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

ausblenden:
Projektname : -
Grant ID : PID2020-118829RB-I00
Förderprogramm : -
Förderorganisation : Ministry for Science and Innovation (MCIN)
Projektname : -
Grant ID : RyC-2014-15671
Förderprogramm : -
Förderorganisation : MINECO
Projektname : -
Grant ID : -
Förderprogramm : -
Förderorganisation : IKERBASQUE
Projektname : -
Grant ID : -
Förderprogramm : -
Förderorganisation : Basic Research Program of the National Research University Higher School of Economics (Russian Federation)

Quelle 1

ausblenden:
Titel: Neural Computing & Applications
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London, United Kingdom : Springer
Seiten: - Band / Heft: 35 (8) Artikelnummer: - Start- / Endseite: 5737 - 5749 Identifikator: ISSN: 1433-3058
CoNE: https://pure.mpg.de/cone/journals/resource/1433-3058