English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Loss of the mitochondrial i-AAA protease YME1L leads to ocular dysfunction and spinal axonopathy

Sprenger, H.-G., Wani, G., Hesseling, A., Konig, T., Patron, M., MacVicar, T., et al. (2018). Loss of the mitochondrial i-AAA protease YME1L leads to ocular dysfunction and spinal axonopathy. EMBO Mol Med, 11(1), e9288. doi:10.15252/emmm.201809288.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:
Not specified

Creators

show
hide
 Creators:
Sprenger, Hans-Georg1, Author           
Wani, G., Author
Hesseling, A., Author
Konig, T., Author
Patron, M.2, Author           
MacVicar, T.2, Author           
Ahola, S.2, Author           
Wai, T., Author
Barth, E., Author
Rugarli, E. I., Author
Bergami, M., Author
Langer, T.2, Author           
Affiliations:
1Sprenger – Molecular Metabolism & Energy Homeostasis, Max Planck Research Groups, Max Planck Institute for Biology of Ageing, Max Planck Society, ou_3583700              
2Department Langer - Mitochondrial Proteostasis, Max Planck Institute for Biology of Ageing, Max Planck Society, ou_3393994              

Content

show
hide
Free keywords: Oma1 Yme1l axonal degeneration microphthalmia mitochondrial proteostasis
 Abstract: Disturbances in the morphology and function of mitochondria cause neurological diseases, which can affect the central and peripheral nervous system. The i-AAA protease YME1L ensures mitochondrial proteostasis and regulates mitochondrial dynamics by processing of the dynamin-like GTPase OPA1. Mutations in YME1L cause a multi-systemic mitochondriopathy associated with neurological dysfunction and mitochondrial fragmentation but pathogenic mechanisms remained enigmatic. Here, we report on striking cell-type-specific defects in mice lacking YME1L in the nervous system. YME1L-deficient mice manifest ocular dysfunction with microphthalmia and cataracts and develop deficiencies in locomotor activity due to specific degeneration of spinal cord axons, which relay proprioceptive signals from the hind limbs to the cerebellum. Mitochondrial fragmentation occurs throughout the nervous system and does not correlate with the degenerative phenotype. Deletion of Oma1 restores tubular mitochondria but deteriorates axonal degeneration in the absence of YME1L, demonstrating that impaired mitochondrial proteostasis rather than mitochondrial fragmentation causes the observed neurological defects.

Details

show
hide
Language(s):
 Dates: 2018-11-022018
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: 30389680
DOI: 10.15252/emmm.201809288
ISSN: 1757-4684 (Electronic)1757-4676 (Linking)
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: EMBO Mol Med
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 11 (1) Sequence Number: - Start / End Page: e9288 Identifier: -