English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Rational design of a triple tumor microenvironment-responsive nanoplatform for enhanced tumor theranostics

Zhang, S., Han, X., Chen, X., Liu, Y., & Zhou, J. (2023). Rational design of a triple tumor microenvironment-responsive nanoplatform for enhanced tumor theranostics. Chemistry – A European Journal, 29(7): e202202469. doi:10.1002/chem.202202469.

Item is

Files

show Files
hide Files
:
Article.pdf (Publisher version), 2MB
 
File Permalink:
-
Name:
Article.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute of Colloids and Interfaces, MTKG; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Zhang, Shouqiang, Author
Han, Xin, Author
Chen, Xinran, Author
Liu, Yuxin1, Author                 
Zhou, Jing, Author
Affiliations:
1Felix Löffler, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2385692              

Content

show
hide
Free keywords: cancer; antitumor agents; TMEs-responsive; nanoplatform; synergistic therapy
 Abstract: The development of responsive nanoplatforms based on the tumor microenvironment (TME) is critical for tumor diagnosis and treatment. Concentrating on a single TME-responsive nanoplatform, however, may result in insufficient diagnostic accuracy and treatment efficacy. Herein, layered double-hydroxides (LDHs) and rare earth nanomaterials (Er@Lu) were combined to create a triple TME-responsive nanoplatform that was then modified with cypate (a fluorescent dye with strong absorbance) by a peptide chain and loaded with epigallocatechin gallate (EGCG), a chemotherapeutic drug. Multiple responses to TME occurred when Er@Lu/LDH-EGCG reached the colorectal tumor region. Based on an acidic TME, the nanoplatform cracked and released Ni2+ and EGCG. NiS, which was produced by the reaction of Ni2+ with abundant H2S in tumor cells, was used for photothermal therapy and the released EGCG was used for chemotherapy. The MMP-7 enzyme specifically expressed in tumor cells recognized and cut the peptide chain, resulting in cypate release. The fluorescence of the Er@Lu was then restored along with the release of cypate because of the absorption competition disappearance. Compared to a single TME response, Er@Lu/LDH-EGCG with a triple TME response led to a better synergistic therapeutic effect in vitro and in vivo . This work has provided new approaches for developing multiple TME-responsive therapeutic nanoplatforms for synergistic therapy with improved diagnosis and therapeutic efficiency.

Details

show
hide
Language(s): eng - English
 Dates: 2022-10-112023
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1002/chem.202202469
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Chemistry – A European Journal
  Other : Chem. – Eur. J.
  Other : Chem. Eur. J.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Weinheim : Wiley-VCH
Pages: - Volume / Issue: 29 (7) Sequence Number: e202202469 Start / End Page: - Identifier: ISSN: 0947-6539