English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  The role of physiological afferent nerve activity during in vivo maturation of the calyx of Held synapse

Erazo-Fischer, E., Striessnig, J., & Taschenberger, H. (2007). The role of physiological afferent nerve activity during in vivo maturation of the calyx of Held synapse. The Journal of Neuroscience, 27(7), 1725-1737. doi:10.1523/JNEUROSCI.4116-06.2007.

Item is

Files

show Files
hide Files
:
1725.full.pdf (Publisher version), 716KB
 
File Permalink:
-
Name:
1725.full.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Multidisciplinary Sciences, MGMN; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Erazo-Fischer, Emilio1, Author
Striessnig, Jörg, Author
Taschenberger, Holger1, Author                 
Affiliations:
1Research Group of Activity-Dependent and Developmental Plasticity at the Calyx of Held, MPI for Biophysical Chemistry, Max Planck Society, ou_578581              

Content

show
hide
Free keywords: -
 Abstract: We studied how afferent nerve activity affects the in vivo maturation of a fast glutamatergic CNS synapse, the calyx of Held. To address this question, we exploited the distinct presynaptic Ca2+ channel subtypes governing transmitter release at the cochlear inner hair cell (IHC)-spiral neuron synaptic junction compared with those at higher synapses along the auditory pathways. We characterized the functional properties of calyx synapses in wild type (wt) compared with those developing in Ca(V)1.3 subunit-deficient (Ca(V)1.3-/-) mice. Ca(V)1.3-/- mice are deaf because of an absence of glutamate release from IHC, which results in a complete lack of cochlea-driven nerve activity. Presynaptic Ca2+ channel properties, Ca2+ dependence of exocytosis, number of readily releasable quanta, and AMPA mEPSCs were unchanged in postnatal day 14 (P14) to P17 calyx synapses of Ca(V)1.3-/- mice. However, synaptic strength was augmented because presynaptic action potentials were broader, leading to increased quantal release, consistent with lower paired-pulse ratios and stronger depression during repetitive synaptic stimulation. Furthermore, asynchronous release after trains was elevated presumably because of higher residual Ca2+ accumulating in the presynaptic terminals. Finally, we measured larger NMDA EPSCs with higher sensitivity to the NR2B subunit-specific antagonist ifenprodil in P14-P17 synapses of Ca(V)1.3-/- compared with wt mice. These results suggest that auditory activity is required for the adjustment of synaptic strength as well as for the downregulation of synaptic NMDA receptors during postnatal development of the calyx of Held. In contrast, properties of the presynaptic release machinery and postsynaptic AMPA receptors are unaffected by chronic changes in the level of afferent activity at this synapse.

Details

show
hide
Language(s): eng - English
 Dates: 2007
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1523/JNEUROSCI.4116-06.2007
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: The Journal of Neuroscience
  Other : The Journal of Neuroscience: the Official Journal of the Society for Neuroscience
  Abbreviation : J. Neurosci.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, DC : Society of Neuroscience
Pages: - Volume / Issue: 27 (7) Sequence Number: - Start / End Page: 1725 - 1737 Identifier: ISSN: 0270-6474
CoNE: https://pure.mpg.de/cone/journals/resource/954925502187_1