Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Computational theories of alcohol use disorder: Mapping learning and choice mechanisms on symptoms

Sebold, M., Kiebel, S. J., Smolka, M. N., Heinz, A., & Deserno, L. (2022). Computational theories of alcohol use disorder: Mapping learning and choice mechanisms on symptoms. Neuropsychobiology, 81(5), 339-356. doi:10.1159/000527146.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Sebold, Miriam1, Autor
Kiebel, Stefan J.2, Autor
Smolka, Michael N.3, Autor
Heinz, Andreas1, Autor
Deserno, Lorenz3, 4, 5, Autor                 
Affiliations:
1Department of Psychiatry and Neurosciences, Charité University Medicine Berlin, Germany, ou_persistent22              
2Faculty of Psychology, TU Dresden, Germany, ou_persistent22              
3Department of Psychiatry and Psychotherapy, TU Dresden, Germany, ou_persistent22              
4Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Hospital Würzburg, Germany, ou_persistent22              
5Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society, ou_634549              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Alcohol use disorder; Craving; Decision-making; Habit formation; Reinforcement learning
 Zusammenfassung: Alcohol use disorder (AUD) is characterized by a combination of symptoms including excessive craving, loss of control, and progressive neglect of alternative pleasures. A mechanistic understanding of what drives these symptoms is needed to improve diagnostic stratification and to develop new treatment and prevention strategies for AUD. To date, there is no consensus regarding a unifying mechanistic framework that accounts for the different symptoms of AUD. Reinforcement learning (RL) and economic choice theories may be key to elucidating the underlying processes of symptom development and maintenance in AUD. These algorithms may account for the different behavioral and physiological phenomena and are suited to dissect mechanisms linked to different symptoms of AUD. We here review different RL and economic choice models and how they map onto three symptoms of AUD: (1) cue-induced craving, (2) neglect of alternative rewards, and (3) consumption despite adverse consequences. For each symptom and theory, we describe findings from animal and human studies. In humans, we focus on empirical studies that investigated RL models in the context of treatment outcome in AUD. The review indicates important gaps to be addressed in the future by highlighting the challenges in transferring findings from RL and economic choice studies to clinical application. We also critically evaluate the potential and pitfalls of a symptom-oriented approach and highlight the importance of elucidating the role of learning and decision-making processes across diagnostic boundaries.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022-10-202022
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1159/000527146
Anderer: epub 2022
PMID: 36265435
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : -
Grant ID : 402170461 - TRR 265
Förderprogramm : -
Förderorganisation : Deutsche Forschungsgemeinschaft (DFG)

Quelle 1

einblenden:
ausblenden:
Titel: Neuropsychobiology
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Basel : Karger.
Seiten: - Band / Heft: 81 (5) Artikelnummer: - Start- / Endseite: 339 - 356 Identifikator: ISSN: 0302-282X
CoNE: https://pure.mpg.de/cone/journals/resource/954925510411