hide
Free keywords:
-
Abstract:
The optical polarization response of a structured material is one of its most significant properties, carrying information about microscopic anisotropies as well as chiral features and spin orientations. Polarization analysis is therefore a key element of imaging and spectroscopy techniques throughout the entire spectrum. In the case of extreme ultraviolet (EUV) radiation, however, both the preparation and detection of well-defined polarization states remain challenging. As a result, polarization-sensitive EUV microscopy based on table-top sources has not yet been realized, despite its great potential, for example, in nanoscale magnetic imaging. Here, we demonstrate polarization contrast in coherent diffractive imaging using high harmonic radiation and investigate the polarization properties of nanoscale transmission waveguides. We quantify the achievable polarization extinction ratio for different waveguide geometries and wavelengths. Our results demonstrate the utility of slab waveguides for efficient EUV polarization control and illustrate the importance of considering polarization contrast in the imaging of nanoscale structures.