Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Dynamical regimes of network bursting in vitro

Vinogradov, O., Ron, S., Weinreb, E., Buendia, V., Moses, E., & Levina, A. (2022). Dynamical regimes of network bursting in vitro. Poster presented at Bernstein Conference 2022, Berlin, Germany.

Item is

Externe Referenzen

ausblenden:
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

ausblenden:
 Urheber:
Vinogradov, O1, Autor                 
Ron, S, Autor
Weinreb, E, Autor
Buendia, V2, Autor                 
Moses, E, Autor
Levina, A1, Autor                 
Affiliations:
1Institutional Guests, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_3505519              
2Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_3017468              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Network bursting is a common type of collective dynamics that robustly emerges in in vitro networks of dissociated primary neurons, cultures of IPSC-derived neurons, and brain organoids [Sukenik et al. 2021]. The mechanisms of network bursting are not yet fully understood. Here we analyze a simple macroscopic rate model with firing rate adaptation that matches the bursting dynamics statistics in vitro. We show that in vitro-like bursting can arise from one of three possible mechanisms: noise-driven bistability, limit cycles, or in the excitable state. Using the model to predict changes in the behavior under pharmacological manipulations allows testing the generality of the model and identifying the most probable dynamical state.
We focus on a simplified macroscopic model that includes a recurrent unit with a sigmoid nonlinearity and slow activity-dependent adaptation mechanism. We approximate the posterior distribution of the model parameters given the statistics of inter-bursting intervals and average burst duration of hippocampal cultures by fitting a conditional density estimator based on neural spline flow [Durkan et al. 2019]. The resulting posterior distribution shows that the most probable parameters fall onto the excitable state. We also found that excitability and adaptation can compensate for each other, allowing the model to exhibit indistinguishable bursting dynamics for a wide range of parameters.
One of the model's predictions is that inter-burst intervals become smaller as excitability increases, whereas burst durations increase.

Details

ausblenden:
Sprache(n):
 Datum: 2022-09
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: -
 Art des Abschluß: -

Veranstaltung

ausblenden:
Titel: Bernstein Conference 2022
Veranstaltungsort: Berlin, Germany
Start-/Enddatum: 2022-09-13 - 2022-09-16

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Bernstein Conference 2022
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: - Artikelnummer: PIV 40 Start- / Endseite: - Identifikator: -