English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Fear and anxiety influences on probabilistic learning: A pilot online study and computational modeling

Truong, V., Binz, M., & Bartels, A. (2022). Fear and anxiety influences on probabilistic learning: A pilot online study and computational modeling. Poster presented at 23rd Conference of Junior Neuroscientists (NeNa 2022), Bad Urach, Germany.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:
Not specified

Creators

show
hide
 Creators:
Truong, V1, Author           
Binz, M2, Author                 
Bartels, A1, Author                 
Affiliations:
1Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497796              
2Research Group Computational Principles of Intelligence, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_3189356              

Content

show
hide
Free keywords: -
 Abstract: People learn differently under fearful and anxious conditions, especially when the environment itself is volatile. We conducted an online pilot study (as part of the functional magnetic resonance imaging project) on how emotions influence probabilistic associative learning in a volatile environment. Participants had to learn the association between two cues (colour patches) and two outcomes (images of faces or hands), while the reversals occurred at times unknown to participants. Their anxiety state and trait were measured using the ‘State-Trait Anxiety Inventory’ at the end of the experiment.
Performance was compared between three different conditions: low, medium, and high fear (using scarified images). Three computational models (Rescorla-Wagner, Hidden Markov Model, and Volatile Kalman Filter) were fitted to the behavioural data in each condition. Bayesian Information Criterion, and cross-validation R-squared were used for model comparison.
Our preliminary results suggest that fear-inducing stimuli did not influence learning performance in a volatile environment. However, we speculate that there might be individual differences in participants’ responding to our fear manipulation (bimodal distribution in high fear condition’s performance). As for anxiety, there was a positive correlation between performance and low to moderate STAI total scores (≤100) but not high STAI total scores (≥120), suggesting that moderate amount of anxiety could facilitate learning performance. Finally, model comparison result suggests that a simple model with fixed learning rate (Rescorla-Wagner Model), rather than a complex one with adaptive learning rate (Volatile Kalman Filter) most frequently explained behavioural data. In addition, task structure-related information was rarely utilized in solving our task (Hidden Markov Model).

Details

show
hide
Language(s):
 Dates: 2022-10
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: -
 Degree: -

Event

show
hide
Title: 23rd Conference of Junior Neuroscientists (NeNa 2022)
Place of Event: Bad Urach, Germany
Start-/End Date: 2022-10-10 - 2022-10-10

Legal Case

show

Project information

show

Source 1

show
hide
Title: NeNa Conference 2022: Neurowissenschaftliche Nachwuchskonferenz (Conference of Junior Neuroscientists)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: P6 Start / End Page: 21 Identifier: -