English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Realizing a deep reinforcement learning agent discovering real-time feedback control strategies for a quantum system

Reuer, K., Landgraf, J., Fösel, T., O'Sullivan, J., Beltrán, L., Akin, A., et al. (2023). Realizing a deep reinforcement learning agent discovering real-time feedback control strategies for a quantum system. Nature Communications, 14: 7138. doi:10.1038/s41467-023-42901-3.

Item is

Files

show Files
hide Files
:
s41467-023-42901-3.pdf (Any fulltext), 2MB
Name:
s41467-023-42901-3.pdf
Description:
-
OA-Status:
Not specified
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
Bildschirmfoto 2023-11-10 um 08.36.28.png (Supplementary material), 56KB
Name:
Bildschirmfoto 2023-11-10 um 08.36.28.png
Description:
-
OA-Status:
Not specified
Visibility:
Public
MIME-Type / Checksum:
image/png / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Reuer, Kevin1, Author
Landgraf, Jonas2, 3, Author           
Fösel, Thomas2, 3, Author           
O'Sullivan, James1, Author
Beltrán, Liberto1, Author
Akin, Abdulkadir1, Author
Norris, Graham J.1, Author
Remm, Ants1, Author
Kerschbaum, Michael1, Author
Besse, Jean-Claude1, Author
Marquardt, Florian2, 3, Author           
Wallraff, Andreas1, 4, Author
Eichler, Christopher1, Author
Affiliations:
1Department of Physics, ETH Zurich, CH-8093 Zurich, Switzerland, ou_persistent22              
2Marquardt Division, Max Planck Institute for the Science of Light, Max Planck Society, Staudtstraße 2, 91058 Erlangen, DE, ou_2421700              
3Friedrich-Alexander-Universität Erlangen-Nürnberg, External Organizations, DE, ou_3487833              
4Quantum Center, ETH Zurich, CH-8093 Zurich, Switzerland, ou_persistent22              

Content

show
hide
Free keywords: Quantum Physics, quant-ph
 Abstract: Realizing the full potential of quantum technologies requires precise real-time control on time scales much shorter than the coherence time. Model-free reinforcement learning promises to discover efficient feedback strategies from scratch without relying on a description of the quantum system. However, developing and training a reinforcement learning agent able to operate in real-time using feedback has been an open challenge. Here, we have implemented such an agent for a single qubit as a sub-microsecond-latency neural network on a field-programmable gate array (FPGA). We demonstrate its use to efficiently initialize a superconducting qubit and train the agent based solely on measurements. Our work is a first step towards adoption of reinforcement learning for the control of quantum devices and more generally any physical device requiring low-latency feedback.

Details

show
hide
Language(s): eng - English
 Dates: 2023-11-06
 Publication Status: Issued
 Pages: 14 pages, 10 figures
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1038/s41467-023-42901-3
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Communications
  Abbreviation : Nat. Commun.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Nature Publishing Group
Pages: - Volume / Issue: 14 Sequence Number: 7138 Start / End Page: - Identifier: ISSN: 2041-1723
CoNE: https://pure.mpg.de/cone/journals/resource/2041-1723