Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Shared biophysical mechanisms determine early biofilm architecture development across different bacterial species.

Jeckel, H., Díaz-Pascual, F., Skinner, D. J., Song, B., Jimenez-Siebert, E., Strenger, K., et al. (2022). Shared biophysical mechanisms determine early biofilm architecture development across different bacterial species. PLOS Biology, 20(10): e3001846. doi:10.1371/journal.pbio.3001846.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel
Alternativer Titel : PLOS biology

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://doi.org/10.1371/journal.pbio.3001846 (Verlagsversion)
Beschreibung:
-
OA-Status:
Gold

Urheber

einblenden:
ausblenden:
 Urheber:
Jeckel, Hannah1, Autor
Díaz-Pascual, Francisco2, Autor           
Skinner, Dominic J1, Autor
Song, Boya1, Autor
Jimenez-Siebert, Eva1, Autor
Strenger, Kerstin1, Autor
Jelli, Eric1, Autor
Vaidya, Sanika2, Autor           
Dunkel, Jorn1, Autor
Drescher, Knut1, Autor
Affiliations:
1external, ou_persistent22              
2Max Planck Research Group Bacterial Biofilms, Alumni, Max Planck Institute for Terrestrial Microbiology, Max Planck Society, ou_3390037              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Bacterial biofilms are among the most abundant multicellular structures on Earth and play essential roles in a wide range of ecological, medical, and industrial processes. However, general principles that govern the emergence of biofilm architecture across different species remain unknown. Here, we combine experiments, simulations, and statistical analysis to identify shared biophysical mechanisms that determine early biofilm architecture development at the single-cell level, for the species Vibrio cholerae, Escherichia coli, Salmonella enterica, and Pseudomonas aeruginosa grown as microcolonies in flow chambers. Our data-driven analysis reveals that despite the many molecular differences between these species, the biofilm architecture differences can be described by only 2 control parameters: cellular aspect ratio and cell density. Further experiments using single-species mutants for which the cell aspect ratio and the cell density are systematically varied, and mechanistic simulations show that tuning these 2 control parameters reproduces biofilm architectures of different species. Altogether, our results show that biofilm microcolony architecture is determined by mechanical cell-cell interactions, which are conserved across different species.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1371/journal.pbio.3001846
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: PLOS Biology
  Andere : PLOS Biol.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: San Francisco, California, US : Public Library of Science
Seiten: - Band / Heft: 20 (10) Artikelnummer: e3001846 Start- / Endseite: - Identifikator: ISSN: 1544-9173
CoNE: https://pure.mpg.de/cone/journals/resource/111056649444170