Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Efficient Gravitational Wave Searches with Pulsar Timing Arrays using Hamiltonian Monte Carlo

Freedman, G. E., Johnson, A. D., van Haasteren, R., & Vigeland, S. J. (2023). Efficient Gravitational Wave Searches with Pulsar Timing Arrays using Hamiltonian Monte Carlo. Physical Review D, 107(4): 043013. doi:10.1103/PhysRevD.107.043013.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Dateien

ausblenden: Dateien
:
2211.01401.pdf (Preprint), 635KB
Name:
2211.01401.pdf
Beschreibung:
File downloaded from arXiv at 2022-11-08 11:13
OA-Status:
Grün
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
:
PhysRevD.107.043013.pdf (Verlagsversion), 582KB
 
Datei-Permalink:
-
Name:
PhysRevD.107.043013.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (Max Planck Institute for Gravitational Physics (Albert Einstein Institute), MPGR; )
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Freedman, Gabriel E., Autor
Johnson, Aaron D., Autor
van Haasteren, Rutger1, Autor           
Vigeland, Sarah J., Autor
Affiliations:
1Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society, ou_24011              

Inhalt

ausblenden:
Schlagwörter: Astrophysics, Instrumentation and Methods for Astrophysics, astro-ph.IM,General Relativity and Quantum Cosmology, gr-qc
 Zusammenfassung: Pulsar timing arrays (PTAs) detect low-frequency gravitational waves (GWs) by
looking for correlated deviations in pulse arrival times. Current Bayesian
searches use Markov Chain Monte Carlo (MCMC) methods, which struggle to sample
the large number of parameters needed to model the PTA and GW signals. As the
data span and number of pulsars increase, this problem will only worsen. An
alternative Monte Carlo sampling method, Hamiltonian Monte Carlo (HMC),
utilizes Hamiltonian dynamics to produce sample proposals informed by
first-order gradients of the model likelihood. This in turn allows it to
converge faster to high dimensional distributions. We implement HMC as an
alternative sampling method in our search for an isotropic stochastic GW
background, and show that this method produces equivalent statistical results
to similar analyses run with standard MCMC techniques, while requiring 100-200
times fewer samples. We show that the speed of HMC sample generation scales as
$\mathcal{O}(N_\mathrm{psr}^{5/4})$ where $N_\mathrm{psr}$ is the number of
pulsars, compared to $\mathcal{O}(N_\mathrm{psr}^2)$ for MCMC methods. These
factors offset the increased time required to generate a sample using HMC,
demonstrating the value of adopting HMC techniques for PTAs.

Details

ausblenden:
Sprache(n):
 Datum: 2022-11-022023
 Publikationsstatus: Erschienen
 Seiten: 9 pages, 5 figures, submitted to Physical Review D
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 2211.01401
DOI: 10.1103/PhysRevD.107.043013
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Physical Review D
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 107 (4) Artikelnummer: 043013 Start- / Endseite: - Identifikator: -