English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Quality over Quantity: Optimizing pulsar timing array analysis for stochastic and continuous gravitational wave signals

Speri, L., Porayko, N. K., Falxa, M., Chen, S., Gair, J., Sesana, A., et al. (2023). Quality over Quantity: Optimizing pulsar timing array analysis for stochastic and continuous gravitational wave signals. Monthly Notices of the Royal Astronomical Society, 518(2), 1802-1817. doi:10.1093/mnras/stac3237.

Item is

Files

show Files
hide Files
:
2211.03201.pdf (Preprint), 2MB
Name:
2211.03201.pdf
Description:
File downloaded from arXiv at 2022-11-08 11:18
OA-Status:
Green
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
stac3237.pdf (Publisher version), 3MB
 
File Permalink:
-
Name:
stac3237.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Gravitational Physics (Albert Einstein Institute), MPGR; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Speri, Lorenzo1, Author           
Porayko, Nataliya K., Author
Falxa, Mikel, Author
Chen, Siyuan, Author
Gair, Jonathan1, Author           
Sesana, Alberto, Author
Taylor, Stephen R., Author
Affiliations:
1Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_1933290              

Content

show
hide
Free keywords: Astrophysics, High Energy Astrophysical Phenomena, astro-ph.HE,General Relativity and Quantum Cosmology, gr-qc
 Abstract: The search for gravitational waves using Pulsar Timing Arrays (PTAs) is a
computationally expensive complex analysis that involves source-specific noise
studies. As more pulsars are added to the arrays, this stage of PTA analysis
will become increasingly challenging. Therefore, optimizing the number of
included pulsars is crucial to reduce the computational burden of data
analysis. Here, we present a suite of methods to rank pulsars for use within
the scope of PTA analysis. First, we use the maximization of the
signal-to-noise ratio as a proxy to select pulsars. With this method, we target
the detection of stochastic and continuous gravitational wave signals. Next, we
present a ranking that minimizes the coupling between spatial correlation
signatures, namely monopolar, dipolar, and Hellings & Downs correlations.
Finally, we also explore how to combine these two methods. We test these
approaches against mock data using frequentist and Bayesian hypothesis testing.
For equal-noise pulsars, we find that an optimal selection leads to an increase
in the log-Bayes factor two times steeper than a random selection for the
hypothesis test of a gravitational wave background versus a common uncorrelated
red noise process. For the same test but for a realistic EPTA dataset, a subset
of 25 pulsars selected out of 40 can provide a log-likelihood ratio that is
$89\%$ of the total, implying that an optimally selected subset of pulsars can
yield results comparable to those obtained from the whole array. We expect
these selection methods to play a crucial role in future PTA data combinations.

Details

show
hide
Language(s):
 Dates: 2022-11-062023
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: arXiv: 2211.03201
DOI: 10.1093/mnras/stac3237
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Monthly Notices of the Royal Astronomical Society
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 518 (2) Sequence Number: - Start / End Page: 1802 - 1817 Identifier: -