Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing

Sarkar, T., Lieberth, K., Pavlou, A., Frank, T., Mailaender, V., McCulloch, I., et al. (2022). An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing. Nature Electronics, 5, 774-783. doi:10.1038/s41928-022-00859-y.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Sarkar, Tanmoy, Autor
Lieberth, Katharina, Autor
Pavlou, Aristea, Autor
Frank, Thomas1, Autor           
Mailaender, Volker, Autor
McCulloch, Iain, Autor
Blom, Paul W. M., Autor
Torriccelli, Fabrizio, Autor
Gkoupidenis, Paschalis, Autor
Affiliations:
1Max Planck Research Group: Olfactory Memory / Frank, MPI of Neurobiology, Max Planck Society, ou_3217974              

Inhalt

einblenden:
ausblenden:
Schlagwörter: dopamine mechanisms excitability barrier synapse Engineering
 Zusammenfassung: An organic artificial neuron that is based on a compact nonlinear electrochemical element can operate in a liquid and responds to the concentration of biological species in its surroundings, allowing its behaviour to be modulated, for example, by interfacing with the membranes of living cells. The effective mimicry of neurons is key to the development of neuromorphic electronics. However, artificial neurons are not typically capable of operating in biological environments, which limits their ability to interface with biological components and to offer realistic neuronal emulation. Organic artificial neurons based on conventional circuit oscillators have been created, but they require many elements for their implementation. Here we report an organic artificial neuron that is based on a compact nonlinear electrochemical element. The artificial neuron can operate in a liquid and is sensitive to the concentration of biological species (such as dopamine or ions) in its surroundings. The system offers in situ operation and spiking behaviour in biologically relevant environments-including typical physiological and pathological concentration ranges (5-150 mM)-and with ion specificity. Small-amplitude (1-150 mV) electrochemical oscillations and noise in the electrolytic medium shape the neuronal dynamics, whereas changes in ionic (>= 2% over the physiological baseline) and biomolecular (>= 0.1 mM dopamine) concentrations modulate the neuronal excitability. We also create biohybrid interfaces in which an artificial neuron functions synergistically and in real time with epithelial cell biological membranes.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2022-11-07
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1038/s41928-022-00859-y
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature Electronics
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Springer Nature
Seiten: - Band / Heft: 5 Artikelnummer: - Start- / Endseite: 774 - 783 Identifikator: ISSN: 2520-1131
CoNE: https://pure.mpg.de/cone/journals/resource/25201131