Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  TriMem: A parallelized hybrid Monte Carlo software for efficient simulations of lipid membranes

Siggel, M., Kehl, S., Reuter, K., Köfinger, J., & Hummer, G. (2022). TriMem: A parallelized hybrid Monte Carlo software for efficient simulations of lipid membranes. The Journal of Chemical Physics, 157(17): 174801. doi:10.1063/5.0101118.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
Link (beliebiger Volltext)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Siggel, Marc1, Autor           
Kehl, Sebastian2, Autor
Reuter, Klaus2, Autor
Köfinger, Jürgen1, Autor                 
Hummer, Gerhard1, 3, Autor                 
Affiliations:
1Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society, ou_2068292              
2Max Planck Computing and Data Facility, Garching, Germany, ou_persistent22              
3Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Lipid membranes are integral building blocks of living cells and perform a multitude of biological functions. Currently, molecular simulations of cellular-scale membrane remodeling processes at atomic resolution are extremely difficult, due to their size, complexity, and the large times-scales on which these processes occur. Instead, elastic membrane models are used to simulate membrane shapes and transitions between them and to infer their properties and functions. Unfortunately, an efficiently parallelized open-source simulation code to do so has been lacking. Here, we present TriMem, a parallel hybrid Monte Carlo simulation engine for triangulated lipid membranes. The kernels are efficiently coded in C++ and wrapped with Python for ease-of-use. The parallel implementation of the energy and gradient calculations and of Monte Carlo flip moves of edges in the triangulated membrane enable us to simulate large and highly curved membrane structures. For validation, we reproduce phase diagrams of vesicles with varying surface-to-volume ratios and area difference. We also compute the density of states to verify correct Boltzmann sampling. The software can be used to tackle a range of large-scale membrane remodeling processes as a step toward cell-scale simulations. Additionally, extensive documentation make the software accessible to the broad biophysics and computational cell biology communities.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022-05-292022-09-302022-11-012022-11-07
 Publikationsstatus: Erschienen
 Seiten: 15
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1063/5.0101118
BibTex Citekey: siggel_trimem_2022
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: The Journal of Chemical Physics
  Kurztitel : J. Chem. Phys.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Woodbury, N.Y. : American Institute of Physics
Seiten: - Band / Heft: 157 (17) Artikelnummer: 174801 Start- / Endseite: - Identifikator: ISSN: 0021-9606
CoNE: https://pure.mpg.de/cone/journals/resource/954922836226