English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  High stress twinning in a compositionally complex steel of very high stacking fault energy

Wang, Z., Lu, W., Min Song, F. A., Ponge, D., Raabe, D., Li, Z., et al. (2022). High stress twinning in a compositionally complex steel of very high stacking fault energy. Nature Communications, 13: 3598. doi:10.1038/s41467-022-31315-2.

Item is

Files

show Files
hide Files
:
s41467-022-31315-2.pdf (Publisher version), 10MB
Name:
s41467-022-31315-2.pdf
Description:
-
OA-Status:
Not specified
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2022
Copyright Info:
The Author(s)

Locators

show

Creators

show
hide
 Creators:
Wang, Zhangwei1, Author
Lu, Wenjun2, Author           
Min Song, Fengchao An1, Author
Ponge, Dirk3, Author           
Raabe, Dierk4, Author           
Li, Zhiming5, 6, 7, Author           
Li, Zhiming6, Author           
Affiliations:
1State Key Laboratory of Powder Metallurgy, Central South University, 410083, Changsha, China, ou_persistent22              
2Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055 China, ou_persistent22              
3Mechanism-based Alloy Design, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863383              
4Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863381              
5State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 China, ou_persistent22              
6High-Entropy Alloys, Project Groups, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_3010672              
7School of Materials Science and Engineering, Central South University, Changsha 410083, China, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Deformation twinning is rarely found in bulk face-centered cubic (FCC) alloys with very high stacking fault energy (SFE) under standard loading conditions. Here, based on results from bulk quasi-static tensile experiments, we report deformation twinning in a micrometer grain-sized compositionally complex steel (CCS) with a very high SFE of ~79 mJ/m2, far above the SFE regime for twinning (<~50 mJ/m2) reported for FCC steels. The dual-nanoprecipitation, enabled by the compositional degrees of freedom, contributes to an ultrahigh true tensile stress up to 1.9 GPa in our CCS. The strengthening effect enhances the flow stress to reach the high critical value for the onset of mechanical twinning. The formation of nanotwins in turn enables further strain hardening and toughening mechanisms that enhance the mechanical performance. The high stress twinning effect introduces a so far untapped strengthening and toughening mechanism, for enabling the design of high SFEs alloys with improved mechanical properties.

Details

show
hide
Language(s):
 Dates: 2022
 Publication Status: Issued
 Pages: 8
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1038/s41467-022-31315-2
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Communications
  Abbreviation : Nat. Commun.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Nature Publishing Group
Pages: - Volume / Issue: 13 Sequence Number: 3598 Start / End Page: - Identifier: ISSN: 2041-1723
CoNE: https://pure.mpg.de/cone/journals/resource/2041-1723