English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Second-Site Mutagenesis of a Hypomorphic argonaute1 Allele Identifies SUPERKILLER3 as an Endogenous Suppressor of Transgene Posttranscriptional Gene Silencing

Yu, A., Saudemont, B., Bouteiller, N., Elvira-Matelot, E., Lepère, G., Parent, J.-S., et al. (2015). Second-Site Mutagenesis of a Hypomorphic argonaute1 Allele Identifies SUPERKILLER3 as an Endogenous Suppressor of Transgene Posttranscriptional Gene Silencing. Plant Physiology, 169(2), 1266-1274. doi:10.1104/pp.15.00585.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Yu, A, Author
Saudemont, B, Author
Bouteiller, N, Author
Elvira-Matelot, E, Author
Lepère, G, Author
Parent, J-S, Author
Morel , J-B, Author
Cao, J1, Author                 
Elmayan, T, Author
Vaucheret, H, Author
Affiliations:
1Department Molecular Biology, Max Planck Institute for Developmental Biology, Max Planck Society, ou_3375790              

Content

show
hide
Free keywords: -
 Abstract: Second-site mutagenesis was performed on the argonaute1-33 (ago1-33) hypomorphic mutant, which exhibits reduced sense transgene posttranscriptional gene silencing (S-PTGS). Mutations in FIERY1, a positive regulator of the cytoplasmic 5'-to-3' EXORIBONUCLEASE4 (XRN4), and in SUPERKILLER3 (SKI3), a member of the SKI complex that threads RNAs directly to the 3'-to-5' exoribonuclease of the cytoplasmic exosome, compensated AGO1 partial deficiency and restored S-PTGS with 100% efficiency. Moreover, xrn4 and ski3 single mutations provoked the entry of nonsilenced transgenes into S-PTGS and enhanced S-PTGS on partially silenced transgenes, indicating that cytoplasmic 5'-to-3' and 3'-to-5' RNA degradation generally counteract S-PTGS, likely by reducing the amount of transgene aberrant RNAs that are used by the S-PTGS pathway to build up small interfering RNAs that guide transgene RNA cleavage by AGO1. Constructs generating improperly terminated transgene messenger RNAs (mRNAs) were not more sensitive to ski3 or xrn4 than regular constructs, suggesting that improperly terminated transgene mRNAs not only are degraded from both the 3' end but also from the 5' end, likely after decapping. The facts that impairment of either 5'-to-3' or 3'-to-5' RNA degradation is sufficient to provoke the entry of transgene RNA into the S-PTGS pathway, whereas simultaneous impairment of both pathways is necessary to provoke the entry of endogenous mRNA into the S-PTGS pathway, suggest poor RNA quality upon the transcription of transgenes integrated at random genomic locations.

Details

show
hide
Language(s):
 Dates: 2015-10
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1104/pp.15.00585
PMID: 26286717
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Plant Physiology
  Other : Plant Physiol.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Bethesda, Md. : American Society of Plant Biologists
Pages: - Volume / Issue: 169 (2) Sequence Number: - Start / End Page: 1266 - 1274 Identifier: ISSN: 0032-0889
CoNE: https://pure.mpg.de/cone/journals/resource/991042744294438