Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  The scaling of mental computation in a sorting task

Haridi, S., Wu, C., Dasgupta, I., & Schulz, E. (2023). The scaling of mental computation in a sorting task. Cognition, 241: 105605. doi:10.1016/j.cognition.2023.105605.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Haridi, S1, Autor                 
Wu, CM, Autor                 
Dasgupta, I, Autor
Schulz, E2, Autor           
Affiliations:
1Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_3017468              
2Research Group Computational Principles of Intelligence, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_3189356              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Many cognitive models provide valuable insights into human behavior. Yet the algorithmic complexity of candidate models can fail to capture how human reaction times scale with increasing input complexity. In the current work, we investigate the algorithms underlying human cognitive processes. Computer science characterizes algorithms by their time and space complexity scaling with problem size. We propose to use participants' reaction times to study how human computations scale with increasing input complexity. We tested this approach in a task where participants had to sort sequences of rectangles by their size. Our results showed that reaction times scaled close to linearly with sequence length and that participants learned and actively used latent structure whenever it was provided. This behavior was in line with a computational model that used the observed sequences to form hypotheses about the latent structures, searching through candidate hypotheses in a directed fashion. These results enrich our understanding of plausible cognitive models for efficient mental sorting and pave the way for future studies using reaction times to investigate the scaling of mental computations across psychological domains.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2023-12
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1016/j.cognition.2023.105605
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Cognition
  Andere : Cognition
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: 12 Band / Heft: 241 Artikelnummer: 105605 Start- / Endseite: - Identifikator: ISSN: 0010-0277
CoNE: https://pure.mpg.de/cone/journals/resource/954925391298