Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Accurate Relativistic Real-Time Time-Dependent Density Functional Theory for Valence and Core Attosecond Transient Absorption Spectroscopy

Moitra, T., Konecny, L., Kadek, M., Rubio, A., & Repisky, M. (2023). Accurate Relativistic Real-Time Time-Dependent Density Functional Theory for Valence and Core Attosecond Transient Absorption Spectroscopy. The Journal of Physical Chemistry Letters, 14(7), 1714-1724. doi:10.1021/acs.jpclett.2c03599.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Dateien

ausblenden: Dateien
:
jz2c03599_si_001.pdf (Ergänzendes Material), 689KB
Name:
jz2c03599_si_001.pdf
Beschreibung:
Supporting Information: Real–time propagator; computational setup; dependence of TAS on the pump pulse carrier frequency; DWTA; and molecular geometries
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
:
acs.jpclett.2c03599.pdf (Verlagsversion), 6MB
Name:
acs.jpclett.2c03599.pdf
Beschreibung:
-
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2023
Copyright Info:
© The Authors. Published by American Chemical Society
Lizenz:
-

Externe Referenzen

ausblenden:
externe Referenz:
https://arxiv.org/abs/2211.16383 (Preprint)
Beschreibung:
-
OA-Status:
Keine Angabe
externe Referenz:
https://doi.org/10.1021/acs.jpclett.2c03599 (Verlagsversion)
Beschreibung:
-
OA-Status:
Hybrid

Urheber

ausblenden:
 Urheber:
Moitra, T.1, Autor
Konecny, L.1, 2, 3, Autor           
Kadek, M.1, 4, 5, Autor
Rubio, A.2, 3, 6, 7, Autor           
Repisky, M.1, 8, Autor
Affiliations:
1Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, ou_persistent22              
2Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_2266715              
3Center for Free-Electron Laser Science, ou_persistent22              
4Department of Physics, Northeastern University, ou_persistent22              
5Algorithmiq Ltd., ou_persistent22              
6Center for Computational Quantum Physics (CCQ), The Flatiron Institute, ou_persistent22              
7Nano-Bio Spectroscopy Group, Departamento de Física de Materiales, Universidad del País Vasco, ou_persistent22              
8Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, ou_persistent22              

Inhalt

ausblenden:
Schlagwörter: Absorption spectroscopy, Hamiltonians, Mathematical methods, Molecular structure, Probes
 Zusammenfassung: First principles theoretical modeling of out-of-equilibrium processes observed in attosecond pump–probe transient absorption spectroscopy (TAS) triggering pure electron dynamics remains a challenging task, especially for heavy elements and/or core excitations containing fingerprints of scalar and spin–orbit relativistic effects. To address this, we formulate a methodology for simulating TAS within the relativistic real-time, time-dependent density functional theory (RT-TDDFT) framework, for both the valence and core energy regimes. Especially for TAS, full four-component (4c) RT simulations are feasible but computationally demanding. Therefore, in addition to the 4c approach, we also introduce the atomic mean-field exact two-component (amfX2C) Hamiltonian accounting for one- and two-electron picture-change corrections within RT-TDDFT. amfX2C preserves the accuracy of the parent 4c method at a fraction of its computational cost. Finally, we apply the methodology to study valence and near-L2,3-edge TAS processes of experimentally relevant systems and provide additional physical insights using relativistic nonequilibrium response theory.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2022-11-252023-02-032023-02-092023-02-13
 Publikationsstatus: Erschienen
 Seiten: 11
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: arXiv: 2211.16383
DOI: 10.1021/acs.jpclett.2c03599
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

ausblenden:
Projektname : -
Grant ID : 945478
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)

Quelle 1

ausblenden:
Titel: The Journal of Physical Chemistry Letters
  Kurztitel : J. Phys. Chem. Lett.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, DC : American Chemical Society
Seiten: - Band / Heft: 14 (7) Artikelnummer: - Start- / Endseite: 1714 - 1724 Identifikator: ISSN: 1948-7185
CoNE: https://pure.mpg.de/cone/journals/resource/1948-7185