English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Accurate Relativistic Real-Time Time-Dependent Density Functional Theory for Valence and Core Attosecond Transient Absorption Spectroscopy

Moitra, T., Konecny, L., Kadek, M., Rubio, A., & Repisky, M. (2023). Accurate Relativistic Real-Time Time-Dependent Density Functional Theory for Valence and Core Attosecond Transient Absorption Spectroscopy. The Journal of Physical Chemistry Letters, 14(7), 1714-1724. doi:10.1021/acs.jpclett.2c03599.

Item is

Files

show Files
hide Files
:
jz2c03599_si_001.pdf (Supplementary material), 689KB
Name:
jz2c03599_si_001.pdf
Description:
Supporting Information: Real–time propagator; computational setup; dependence of TAS on the pump pulse carrier frequency; DWTA; and molecular geometries
OA-Status:
Not specified
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
acs.jpclett.2c03599.pdf (Publisher version), 6MB
Name:
acs.jpclett.2c03599.pdf
Description:
-
OA-Status:
Hybrid
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2023
Copyright Info:
© The Authors. Published by American Chemical Society
License:
-

Locators

show
hide
Locator:
https://arxiv.org/abs/2211.16383 (Preprint)
Description:
-
OA-Status:
Not specified
Locator:
https://doi.org/10.1021/acs.jpclett.2c03599 (Publisher version)
Description:
-
OA-Status:
Hybrid

Creators

show
hide
 Creators:
Moitra, T.1, Author
Konecny, L.1, 2, 3, Author           
Kadek, M.1, 4, 5, Author
Rubio, A.2, 3, 6, 7, Author           
Repisky, M.1, 8, Author
Affiliations:
1Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, ou_persistent22              
2Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_2266715              
3Center for Free-Electron Laser Science, ou_persistent22              
4Department of Physics, Northeastern University, ou_persistent22              
5Algorithmiq Ltd., ou_persistent22              
6Center for Computational Quantum Physics (CCQ), The Flatiron Institute, ou_persistent22              
7Nano-Bio Spectroscopy Group, Departamento de Física de Materiales, Universidad del País Vasco, ou_persistent22              
8Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, ou_persistent22              

Content

show
hide
Free keywords: Absorption spectroscopy, Hamiltonians, Mathematical methods, Molecular structure, Probes
 Abstract: First principles theoretical modeling of out-of-equilibrium processes observed in attosecond pump–probe transient absorption spectroscopy (TAS) triggering pure electron dynamics remains a challenging task, especially for heavy elements and/or core excitations containing fingerprints of scalar and spin–orbit relativistic effects. To address this, we formulate a methodology for simulating TAS within the relativistic real-time, time-dependent density functional theory (RT-TDDFT) framework, for both the valence and core energy regimes. Especially for TAS, full four-component (4c) RT simulations are feasible but computationally demanding. Therefore, in addition to the 4c approach, we also introduce the atomic mean-field exact two-component (amfX2C) Hamiltonian accounting for one- and two-electron picture-change corrections within RT-TDDFT. amfX2C preserves the accuracy of the parent 4c method at a fraction of its computational cost. Finally, we apply the methodology to study valence and near-L2,3-edge TAS processes of experimentally relevant systems and provide additional physical insights using relativistic nonequilibrium response theory.

Details

show
hide
Language(s): eng - English
 Dates: 2022-11-252023-02-032023-02-092023-02-13
 Publication Status: Issued
 Pages: 11
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 2211.16383
DOI: 10.1021/acs.jpclett.2c03599
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : -
Grant ID : 945478
Funding program : Horizon 2020 (H2020)
Funding organization : European Commission (EC)

Source 1

show
hide
Title: The Journal of Physical Chemistry Letters
  Abbreviation : J. Phys. Chem. Lett.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, DC : American Chemical Society
Pages: - Volume / Issue: 14 (7) Sequence Number: - Start / End Page: 1714 - 1724 Identifier: ISSN: 1948-7185
CoNE: https://pure.mpg.de/cone/journals/resource/1948-7185