Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Core dimensions of human material perception

Schmidt, F., Hebart, M. N., Schmid, A. C., & Fleming, R. W. (2025). Core dimensions of human material perception. Proceedings of the National Academy of Sciences of the United States of America, 122(10): e2417202122. doi:10.1073/pnas.2417202122.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Dateien

ausblenden: Dateien
:
Schmidt_2025.pdf (Verlagsversion), 4MB
Name:
Schmidt_2025.pdf
Beschreibung:
-
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
:
Schmidt_2025_Suppl.pdf (Ergänzendes Material), 30MB
Name:
Schmidt_2025_Suppl.pdf
Beschreibung:
-
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
:
Schmidt_Hebart_pre.pdf (Preprint), 3MB
Name:
Schmidt_Hebart_pre.pdf
Beschreibung:
-
OA-Status:
Grün
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Schmidt, Filipp1, 2, Autor
Hebart, Martin N.2, 3, 4, Autor                 
Schmid, Alexandra C.1, 5, Autor
Fleming, Roland W.1, 2, Autor
Affiliations:
1Department of Experimental Psychology, Justus Liebig University, Giessen, Germany, ou_persistent22              
2Center for Mind, Brain and Behavior (CMBB), Philipps University Marburg, Germany, ou_persistent22              
3Department of Medicine, Justus Liebig University, Giessen, Germany, ou_persistent22              
4Max Planck Research Group Vision and Computational Cognition, MPI for Human Cognitive and Brain Sciences, Max Planck Society, ou_3158378              
5Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA, ou_persistent22              

Inhalt

ausblenden:
Schlagwörter: Categorization; Computational model; Feature space; Material perception; Vision
 Zusammenfassung: Visually categorizing and comparing materials is crucial for everyday behavior, but what organizational principles underlie our mental representation of materials? Here, we used a large-scale data-driven approach to uncover core latent dimensions of material representations from behavior. First, we created an image dataset of 200 systematically sampled materials and 600 photographs (STUFF dataset, https://osf.io/myutc/). Using these images, we next collected 1.87 million triplet similarity judgments and used a computational model to derive a set of sparse, positive dimensions underlying these judgments. The resulting multidimensional embedding space predicted independent material similarity judgments and the similarity matrix of all images close to the human intersubject consistency. We found that representations of individual images were captured by a combination of 36 material dimensions that were highly reproducible and interpretable, comprising perceptual (e.g., grainy, blue) as well as conceptual (e.g., mineral, viscous) dimensions. These results provide the foundation for a comprehensive understanding of how humans make sense of materials.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2024-08-232025-01-242025-03-052025-03-11
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1073/pnas.2417202122
Anderer: epub 2025
PMID: 40042912
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

ausblenden:
Projektname : -
Grant ID : ERC-CoG-2015-682859; ERC-ADG-2022-101098225; ERC-StG-2021-101039712
Förderprogramm : -
Förderorganisation : European Research Council (ERC)

Quelle 1

ausblenden:
Titel: Proceedings of the National Academy of Sciences of the United States of America
  Andere : PNAS
  Andere : Proceedings of the National Academy of Sciences of the USA
  Kurztitel : Proc. Natl. Acad. Sci. U. S. A.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, D.C. : National Academy of Sciences
Seiten: - Band / Heft: 122 (10) Artikelnummer: e2417202122 Start- / Endseite: - Identifikator: ISSN: 0027-8424
CoNE: https://pure.mpg.de/cone/journals/resource/954925427230