Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Effect of capillary fluid flow on single cancer cell cycle dynamics, motility, volume and morphology

Taïeb, H. M., Herment, G., Robinson, T., & Cipitria, A. (2023). Effect of capillary fluid flow on single cancer cell cycle dynamics, motility, volume and morphology. Lab on a Chip, 23(1), 92-105. doi:10.1039/D2LC00322H.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Article.pdf (Verlagsversion), 9MB
Name:
Article.pdf
Beschreibung:
-
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://doi.org/10.17617/3.658NWI (Forschungsdaten)
Beschreibung:
-
OA-Status:
Grün

Urheber

einblenden:
ausblenden:
 Urheber:
Taïeb, Hubert M.1, Autor           
Herment, Guillaume1, Autor
Robinson, Tom2, Autor                 
Cipitria, Amaia1, Autor                 
Affiliations:
1Amaia Cipitria, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2489692              
2Tom Robinson, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2288691              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: From primary tumours and disseminating to secondary organs, cancer cells experience a wide variety of fluid flow profiles when passing through blood vessels or the lymphatic system before extravasation. Sinusoidal capillaries are a common site for extravasation. Therefore, we aim to investigate how metastatic cancer cells react to a biophysical cue such as capillary fluid flow by quantifying its effect on metastatic cell cycle progression, motility, cell and nuclear volume, and morphology. We use MDA-MB-231 breast cancer cells genetically modified with fluorescent ubiquitination-based cell cycle indicator 2 (FUCCI2) as a model system. Single cells are trapped using a microfluidic device and exposed to different laminar flows. Quantitative time-lapse imaging in both 2D epifluorescence and 3D confocal microscopy is performed using in-house software FUCCItrack. In addition, 3D time-lapse with cell and nuclear segmentation is performed with a deep learning approach to streamline the image processing of big datasets. We show that at a single cell level, faster fluid flow leads to a shorter S/G2/M phase and an overall shorter cell cycle, as well as increase in cell motility irrespective of the flow direction. 3D time-lapse confocal imaging of MDA-FUCCI2 single cells reveals the evolution of cell and nuclear volume and morphology as a function of a specific cell cycle phase. Both cell and nuclear volume increase linearly over time. Cell morphology elongates more strongly during the S/G2/M phase, whereas the nuclear shape remains constant. Under the highest flow conditions, only during the S/G2/M phase can we observe a more elongated nucleus, while the cell sphericity remains similar to the control. Collectively, this data, together with the deep learning approach, provides new insights into the potential impact of fluid flow at a single cell level.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022-11-302023
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1039/D2LC00322H
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Lab on a Chip
  Andere : Lab Chip
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Cambridge : Royal Society of Chemistry
Seiten: - Band / Heft: 23 (1) Artikelnummer: - Start- / Endseite: 92 - 105 Identifikator: ISSN: 1473-0197