English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Lamellar carbon nitride membrane for enhanced ion sieving and water desalination

Wang, Y., Lian, T., Tarakina, N. V., Yuan, J., & Antonietti, M. (2022). Lamellar carbon nitride membrane for enhanced ion sieving and water desalination. Nature Communications, 13: 7339. doi:10.1038/s41467-022-35120-9.

Item is

Files

show Files
hide Files
:
Article.pdf (Publisher version), 3MB
Name:
Article.pdf
Description:
-
OA-Status:
Gold
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Wang, Yang1, Author           
Lian, Tingting1, Author           
Tarakina, Nadezda V.2, Author                 
Yuan, Jiayin, Author
Antonietti, Markus1, Author                 
Affiliations:
1Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863321              
2Nadezda V. Tarakina, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2522693              

Content

show
hide
Free keywords: -
 Abstract: Membrane-based water treatment processes offer possibility to alleviate the water scarcity dilemma in energy-efficient and sustainable ways, this has been exemplified in filtration membranes assembled from two-dimensional (2D) materials for water desalination purposes. Most representatives however tend to swell or disintegrate in a hydrated state, making precise ionic or molecular sieving a tough challenge. Here we report that the chemically robust 2D carbon nitride can be activated using aluminum polycations as pillars to modulate the interlayer spacing of the conjugated framework, the noncovalent interaction concomitantly affords a well-interlinked lamellar structure, to be carefully distinguished from random stacking patterns in conventional carbon nitride membranes. The conformally packed membrane is characterized by adaptive subnanochannel and structure integrity to allow excellent swelling resistance, and breaks permeability-selectivity trade-off limit in forward osmosis due to progressively regulated transport passage, achieving high salt rejection (>99.5%) and water flux (6 L m−2h−1), along with tunable permeation behavior that enables water gating in acidic and alkaline environments. These findings position carbon nitride a rising building block to functionally expand the 2D membrane library for applications in water desalination and purification scenarios.

Details

show
hide
Language(s): eng - English
 Dates: 2022-11-292022
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1038/s41467-022-35120-9
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Communications
  Abbreviation : Nat. Commun.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Nature Publishing Group
Pages: - Volume / Issue: 13 Sequence Number: 7339 Start / End Page: - Identifier: ISSN: 2041-1723