English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  The eROSITA view of the Abell 3391/95 field: Case study from the Magneticum cosmological simulation

Biffi, V., Dolag, K., Reiprich, T. H., Veronica, A., Miriam, E.-R.-C., Bulbul, E., et al. (2022). The eROSITA view of the Abell 3391/95 field: Case study from the Magneticum cosmological simulation. Astronomy and Astrophysics, 661: A17. doi:10.1051/0004-6361/202141107.

Item is

Files

show Files
hide Files
:
The eROSITA view of the Abell 339195 field Case study from the Magneticum cosmological simulation.pdf (Any fulltext), 5MB
 
File Permalink:
-
Name:
The eROSITA view of the Abell 339195 field Case study from the Magneticum cosmological simulation.pdf
Description:
-
OA-Status:
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Biffi, Veronica, Author
Dolag, Klaus, Author
Reiprich, Thomas H., Author
Veronica, Angie, Author
Miriam, E. Ramos-Ceja1, Author           
Bulbul, Esra1, Author           
Ota, Naomi, Author
Ghirardini, Vittorio1, Author           
Affiliations:
1High Energy Astrophysics, MPI for Extraterrestrial Physics, Max Planck Society, ou_159890              

Content

show
hide
Free keywords: -
 Abstract: Context. Clusters of galaxies reside at the nodes of the cosmic web, interconnected by filamentary structures that contain tenuous diffuse gas, especially in the warm-hot phase. Galaxy clusters grow by mergers of smaller objects and gas that are mainly accreted through these large-scale filaments. For the first time, the large-scale cosmic structure and a long gas-emission filament have been captured by eROSITA on board the Spectrum-Roentgen-Gamma mission in a direct X-ray observation of the A3391/95 field.
Aims. We investigate the assembly history of an A3391/95-like system of clusters and the thermo-chemical properties of the diffuse gas in it by connecting simulation predictions to the eROSITA observations with the aim to constrain the origin and nature of the gas in the pair-interconnecting bridge.
Methods. We analysed the properties of a system resembling A3391/95, extracted from the (352 h−1 cMpc)3 volume of the Magneticum Pathfinder cosmological simulations at z = 0.07. We tracked the main progenitors of the pair clusters and of surrounding groups back in time to study the assembly history of the system and its evolution.
Results. Similarly to the observed A3391/95 system, the simulated cluster pair is embedded in a complex network of gas filaments, with structures aligned over more than 20 projected Mpc, and the whole region collapses towards the central overdense node. The spheres of influence (3 × R200) of the two main clusters already overlap at z = 0.07, but their virial boundaries are still physically separated. The diffuse gas located in the interconnecting bridge closely reflects the warm-hot intergalactic medium, with a typical temperature of ~1 keV and an overdensity δ ~ 100 with respect to the mean baryon density of the Universe, and a lower enrichment level compared to the intra-cluster medium in clusters. We find that most of the bridge gas collapsed from directions roughly orthogonal to the intra-cluster gas accretion directions, and its origin is mostly unrelated to the two cluster progenitors. We find clear signatures in the surrounding groups of infall motion towards the pair, such as significant radial velocities and a slowdown of gas compared to dark matter. These findings further support the hypothesis that the Northern Clump (MCXC J0621.7-5242) cluster infalls along a cosmic gas filament towards Abell 3391 and might be merging with it.
Conclusions. We conclude that in this configuration, the pair clusters of the A3391/95-like system are in a pre-merger phase and have not yet interacted. The diffuse gas in the interconnecting bridge is mostly warm filament gas and not tidally stripped cluster gas.

Details

show
hide
Language(s): eng - English
 Dates: 2022-05-18
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1051/0004-6361/202141107
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Astronomy and Astrophysics
  Other : Astron. Astrophys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Les Ulis Cedex A France : EDP Sciences
Pages: - Volume / Issue: 661 Sequence Number: A17 Start / End Page: - Identifier: ISSN: 1432-0746
ISSN: 0004-6361
CoNE: https://pure.mpg.de/cone/journals/resource/954922828219_1