Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  3D-printed hierarchical pillar array electrodes for high-performance semi-artificial photosynthesis

Chen, X., Lawrence, J. M., Wey, L. T., Schertel, L., Jing, Q., Vignolini, S., et al. (2022). 3D-printed hierarchical pillar array electrodes for high-performance semi-artificial photosynthesis. Nature Materials, 21(7), 811-818. doi:10.1038/s41563-022-01205-5.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Chen, X., Autor
Lawrence, J. M., Autor
Wey, L. T., Autor
Schertel, L., Autor
Jing, Q., Autor
Vignolini, Silvia1, Autor                 
Howe, C. J., Autor
Kar-Narayan, S., Autor
Zhang, J. Z., Autor
Affiliations:
1External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: 3D printers Artificial photosynthesis Indium compounds Tin oxides Aerosol jet printings Array-electrode Bio electricities Bio-fuels Biomachinery Forward looking Micropillar arrays Performance Pillar arrays Electrodes electricity electrode photosynthesis Synechocystis three dimensional printing Printing, Three-Dimensional
 Zusammenfassung: The rewiring of photosynthetic biomachineries to electrodes is a forward-looking semi-artificial route for sustainable bio-electricity and fuel generation. Currently, it is unclear how the electrode and biomaterial interface can be designed to meet the complex requirements for high biophotoelectrochemical performance. Here we developed an aerosol jet printing method for generating hierarchical electrode structures using indium tin oxide nanoparticles. We printed libraries of micropillar array electrodes varying in height and submicrometre surface features, and studied the energy/electron transfer processes across the bio-electrode interfaces. When wired to the cyanobacterium Synechocystis sp. PCC 6803, micropillar array electrodes with microbranches exhibited favourable biocatalyst loading, light utilization and electron flux output, ultimately almost doubling the photocurrent of state-of-the-art porous structures of the same height. When the micropillars’ heights were increased to 600 µm, milestone mediated photocurrent densities of 245 µA cm–2 (the closest thus far to theoretical predictions) and external quantum efficiencies of up to 29% could be reached. This study demonstrates how bio-energy from photosynthesis could be more efficiently harnessed in the future and provide new tools for three-dimensional electrode design. © 2022, The Author(s), under exclusive licence to Springer Nature Limited.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1038/s41563-022-01205-5
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature Materials
  Kurztitel : Nat. Mater.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London, UK : Nature Pub. Group
Seiten: - Band / Heft: 21 (7) Artikelnummer: - Start- / Endseite: 811 - 818 Identifikator: ISSN: 1476-1122