Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Highly-Scattering Cellulose-Based Films for Radiative Cooling

Jaramillo-Fernandez, J., Yang, H., Schertel, L., Whitworth, G. L., Garcia, P. D., Vignolini, S., et al. (2022). Highly-Scattering Cellulose-Based Films for Radiative Cooling. Advanced Science, 9(8): 2104758. doi:10.1002/advs.202104758.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Jaramillo-Fernandez, J., Autor
Yang, H., Autor
Schertel, L., Autor
Whitworth, G. L., Autor
Garcia, P. D., Autor
Vignolini, Silvia1, Autor                 
Sotomayor-Torres, C. M., Autor
Affiliations:
1External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: cellulose high mid-infrared emittance low solar absorption radiative cooling scattering Cellulose films Conductive films Nanotechnology Solar radiation Temperature Thick films Advanced science Ambients CO 2 reduction Energy Energy savings Energy-savings Midinfrared Nanofabrication process Solar irradiances Energy conservation Cooling Materials Sun Light
 Zusammenfassung: Passive radiative cooling (RC) enables the cooling of objects below ambient temperature during daytime without consuming energy, promising to be a game changer in terms of energy savings and CO2 reduction. However, so far most RC surfaces are obtained by energy-intensive nanofabrication processes or make use of unsustainable materials. These limitations are overcome by developing cellulose films with unprecedentedly low absorption of solar irradiance and strong mid-infrared (mid-IR) emittance. In particular, a cellulose-derivative (cellulose acetate) is exploited to produce porous scattering films of two different thicknesses, L ≈ 30 µm (thin) and L ≈ 300 µm (thick), making them adaptable to above and below-ambient cooling applications. The thin and thick films absorb only (Formula presented.) of the solar irradiance, which represents a net cooling power gain of at least 17 W m−2, compared to state-of-the-art cellulose-based radiative-cooling materials. Field tests show that the films can reach up to ≈5 °C below ambient temperature, when solar absorption and conductive/convective losses are minimized. Under dryer conditions (water column = 1 mm), it is estimated that the films can reach average minimum temperatures of ≈7–8 °C below the ambient. The work presents an alternative cellulose-based material for efficient radiative cooling that is simple to fabricate, cost-efficient and avoids the use of polluting materials. © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1002/advs.202104758
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Advanced Science
  Andere : Adv. Sci.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Weinheim : Wiley-VCH
Seiten: - Band / Heft: 9 (8) Artikelnummer: 2104758 Start- / Endseite: - Identifikator: ISSN: 2198-3844