hide
Free keywords:
-
Abstract:
This work introduces two experimental approaches to control quantum dynamics in molecules, employing core electrons as messengers. A laser source providing ultrashort pulses has been developed to access the timescale of electronic and structural dynamics inside molecules. Pulses of few-cycle durations in the 1 µm to 2 µm short-wavelength infrared (SWIR) spectral region provide intensities up to 1015 W/cm2 . In combination with a vacuum beamline, this experimental setup allows for ultrafast laser control of molecular dynamics probed by core-electron transitions via x-ray absorption spectroscopy (XAS). The first experiment investigates the manipulation of molecular electronic structure. Here, a soft x-ray (SXR) pulse probes simultaneously to an SWIR pulse of variable intensity. The measured intensityvii dependent absorbance changes in SF6 reveal an increased effective electronic-exchange energy. This demonstrates the alteration of this purely quantum-mechanical component of the electron-electron interaction for the first time. In a second experiment, an SWIR pulse induces coherent molecular vibrations with amplitudes of ten times the diameter of the nucleus. Subsequently, a time-delayed SXR pulse probes the bond-length changes via core-level transitions. This enables an unprecedented 14 femtometer precision which paves the way for site-specific vibrational metrology in gas-phase molecules. Overall, these results enable ultrafast chemical control on a quantum level.