Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  AlphaPeptDeep: A modular deep learning framework to predict peptide properties for proteomics

Zeng, W.-F., Zhou, X.-X., Willems, S., Ammar, C., Wahle, M., Bludau, I., et al. (2022). AlphaPeptDeep: A modular deep learning framework to predict peptide properties for proteomics. Nature Communications, 13(1): 7238. doi:10.1038/s41467-022-34904-3.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Dateien

ausblenden: Dateien
:
s41467-022-34904-3.pdf (Verlagsversion), 2MB
Name:
s41467-022-34904-3.pdf
Beschreibung:
-
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
Creative Commons Attribution 4.0 International License

Externe Referenzen

ausblenden:
externe Referenz:
https://www.nature.com/articles/s41467-022-34904-3 (Verlagsversion)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

ausblenden:
 Urheber:
Zeng, Wen-Feng1, Autor           
Zhou, Xie-Xuan1, Autor
Willems, Sander1, Autor           
Ammar, Constantin1, Autor           
Wahle, Maria1, Autor
Bludau, Isabell1, Autor           
Voytik, Eugenia1, Autor           
Strauss, Maximillian T., Autor
Mann, Matthias1, Autor
Affiliations:
1Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society, ou_1565159              

Inhalt

ausblenden:
Schlagwörter: RETENTION TIME; IDENTIFICATIONScience & Technology - Other Topics;
 Zusammenfassung: Machine learning and in particular deep learning (DL) are increasingly important in mass spectrometry (MS)-based proteomics. Recent DL models can predict the retention time, ion mobility and fragment intensities of a peptide just from the amino acid sequence with good accuracy. However, DL is a very rapidly developing field with new neural network architectures frequently appearing, which are challenging to incorporate for proteomics researchers. Here we introduce AlphaPeptDeep, a modular Python framework built on the PyTorch DL library that learns and predicts the properties of peptides (https://github.com/MannLabs/alphapeptdeep). It features a model shop that enables non-specialists to create models in just a few lines of code. AlphaPeptDeep represents post-translational modifications in a generic manner, even if only the chemical composition is known. Extensive use of transfer learning obviates the need for large data sets to refine models for particular experimental conditions. The AlphaPeptDeep models for predicting retention time, collisional cross sections and fragment intensities are at least on par with existing tools. Additional sequence-based properties can also be predicted by AlphaPeptDeep, as demonstrated with a HLA peptide prediction model to improve HLA peptide identification for data-independent acquisition (https://github.com/MannLabs/PeptDeep-HLA).

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2022-11-24
 Publikationsstatus: Online veröffentlicht
 Seiten: 14
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: ISI: 000888905000008
DOI: 10.1038/s41467-022-34904-3
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Nature Communications
  Kurztitel : Nat. Commun.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Nature Publishing Group
Seiten: - Band / Heft: 13 (1) Artikelnummer: 7238 Start- / Endseite: - Identifikator: ISSN: 2041-1723
CoNE: https://pure.mpg.de/cone/journals/resource/2041-1723