Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  High-precision estimation of emitter positions using Bayesian grouping of localizations

Fazel, M., Wester, M. J., Schodt, D. J., Cruz, S. R., Strauss, S., Schueder, F., et al. (2022). High-precision estimation of emitter positions using Bayesian grouping of localizations. Nature Communications, 13(1): 7152. doi:10.1038/s41467-022-34894-2.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Fazel, Mohamadreza, Autor
Wester, Michael J., Autor
Schodt, David J., Autor
Cruz, Sebastian Restrepo, Autor
Strauss, Sebastian1, Autor           
Schueder, Florian1, Autor           
Schlichthärle, Thomas1, Autor           
Gillette, Jennifer M., Autor
Lidke, Diane S., Autor
Rieger, Bernd, Autor
Jungmann, Ralf1, Autor           
Lidke, Keith A., Autor
Affiliations:
1Jungmann, Ralf / Molecular Imaging and Bionanotechnology, Max Planck Institute of Biochemistry, Max Planck Society, ou_2149679              

Inhalt

einblenden:
ausblenden:
Schlagwörter: SINGLE-MOLECULE LOCALIZATION; SUPERRESOLUTION MICROSCOPY; RESOLUTION; DIMERIZATION; PATTERNS; RECEPTOR; PROTEINScience & Technology - Other Topics;
 Zusammenfassung: Single-molecule localization microscopy relies on stochastic blinking events, treated as independent events without assignment to a particular emitter. Here, BaGoL takes low precision localizations generated from multiple emitter blinkings during DNAPAINT and dSTORM and finds the underlying emitter positions with high precision.
Single-molecule localization microscopy super-resolution methods rely on stochastic blinking/binding events, which often occur multiple times from each emitter over the course of data acquisition. Typically, the blinking/binding events from each emitter are treated as independent events, without an attempt to assign them to a particular emitter. Here, we describe a Bayesian method of inferring the positions of the tagged molecules by exploring the possible grouping and combination of localizations from multiple blinking/binding events. The results are position estimates of the tagged molecules that have improved localization precision and facilitate nanoscale structural insights. The Bayesian framework uses the localization precisions to learn the statistical distribution of the number of blinking/binding events per emitter and infer the number and position of emitters. We demonstrate the method on a range of synthetic data with various emitter densities, DNA origami constructs and biological structures using DNA-PAINT and dSTORM data. We show that under some experimental conditions it is possible to achieve sub-nanometer precision.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022-11-22
 Publikationsstatus: Online veröffentlicht
 Seiten: 11
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: ISI: 000887967900017
DOI: 10.1038/s41467-022-34894-2
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature Communications
  Kurztitel : Nat. Commun.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Nature Publishing Group
Seiten: - Band / Heft: 13 (1) Artikelnummer: 7152 Start- / Endseite: - Identifikator: ISSN: 2041-1723
CoNE: https://pure.mpg.de/cone/journals/resource/2041-1723