English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Predicting Activity Coefficients at Infinite Dilution Using Hybrid Residual Graph Neural Networks

Sanchez Medina, E. I., Linke, S., Stoll, M., & Sundmacher, K. (2022). Predicting Activity Coefficients at Infinite Dilution Using Hybrid Residual Graph Neural Networks. Poster presented at 2022 AIChE Annual Meeting, Phoenix, USA.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Sanchez Medina, Edgar Ivan1, 2, Author           
Linke, Steffen1, 3, Author           
Stoll, Martin4, Author
Sundmacher, Kai2, 3, Author                 
Affiliations:
1International Max Planck Research School (IMPRS), Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738143              
2Otto-von-Guericke-Universität Magdeburg, External Organizations, ou_1738156              
3Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738151              
4External Organizations, ou_persistent22              

Content

show

Details

show
hide
Language(s): eng - English
 Dates: 2022
 Publication Status: Not specified
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: -
 Degree: -

Event

show
hide
Title: 2022 AIChE Annual Meeting
Place of Event: Phoenix, USA
Start-/End Date: 2022-11-13 - 2022-11-18

Legal Case

show

Project information

show

Source

show