English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  A “non-magnetic” triplet bismuthinidene enabled by relativity

Pang, Y., Nöthling, N., Leutzsch, M., Kang, L., Bill, E., van Gastel, M., et al. (2022). A “non-magnetic” triplet bismuthinidene enabled by relativity. ChemRxiv: the Preprint Server for Chemistry. doi:10.26434/chemrxiv-2022-d3jl7.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Pang, Yue1, Author           
Nöthling, Nils2, Author           
Leutzsch, Markus3, Author           
Kang, Liqun4, Author
Bill, Eckhard4, Author
van Gastel, Maurice5, Author           
Reijerse, Edward4, Author
Goddard, Richard2, Author           
Wagner, Lucas1, Author           
SantaLucia, Daniel6, Author           
DeBeer, Serena4, Author
Neese, Frank6, Author           
Cornella, Josep1, Author           
Affiliations:
1Research Group Cornellà, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2466693              
2Service Department Lehmann (EMR), Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1445625              
3Service Department Farès (NMR), Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1445623              
4Max-Planck-Institut für chemische Energiekonversion, Stiftstr. 34-36, 45470 Mülheim, ou_persistent22              
5Research Group van Gastel, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2541713              
6Research Department Neese, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2541710              

Content

show
hide
Free keywords: -
 Abstract: Isolation and stabilization of main group diradical species have posed a synthetic challenge over the years due to their intrinsic high reactivity. Herein we report on a large-scale synthesis and isolation of a mono-coordinate bismuthinidene featuring a rigid and bulky ligand, which protects the Bi(I) center. The compound was characterized by its unique spectroscopic features (UV-vis and NMR), but more prominently, by its magnetic properties. Multiconfigurational quantum chemical calculations predict the ground state of the compound to be dominated by a spin-triplet. Further support for this electronic structure description was obtained through correlation of theory to experimental XRD, XAS, and UV-Vis data. However, all magnetic measurements (EPR, NMR and SQUID) point to a diamagnetic compound. This apparent discrepancy can be explained by an extremely large spin-orbit coupling (SOC) that leads to an unprecedented zero-field splitting of more than 8000 cm‒1, thus leaving a MS = 0 magnetic sublevel thermally isolated in the electronic ground state. The extremely large SOC effect is a result of the low-coordination number of the bismuth center in interplay with its heavy element nature.

Details

show
hide
Language(s): eng - English
 Dates: 2022-12-15
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Internal
 Identifiers: DOI: 10.26434/chemrxiv-2022-d3jl7
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: ChemRxiv : the Preprint Server for Chemistry
  Abbreviation : ChemRxiv
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, DC; Frankfurt am Main; Cambridge, London : ACS, GDCh, Royal Society of Chemistry
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: ZDB: 2949894-7
CoNE: https://pure.mpg.de/cone/journals/resource/2949894-7