Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Conversational Question Answering on Heterogeneous Sources

Christmann, P., Saha Roy, R., & Weikum, G. (2022). Conversational Question Answering on Heterogeneous Sources. Retrieved from https://arxiv.org/abs/2204.11677.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Forschungspapier

Dateien

einblenden: Dateien
ausblenden: Dateien
:
arXiv:2204.11677.pdf (Preprint), 860KB
Name:
arXiv:2204.11677.pdf
Beschreibung:
File downloaded from arXiv at 2022-12-28 12:17 SIGIR 2022 Research Track Long Paper
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Christmann, Philipp1, Autor           
Saha Roy, Rishiraj1, Autor           
Weikum, Gerhard1, Autor           
Affiliations:
1Databases and Information Systems, MPI for Informatics, Max Planck Society, ou_24018              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Computer Science, Information Retrieval, cs.IR,Computer Science, Computation and Language, cs.CL
 Zusammenfassung: Conversational question answering (ConvQA) tackles sequential information
needs where contexts in follow-up questions are left implicit. Current ConvQA
systems operate over homogeneous sources of information: either a knowledge
base (KB), or a text corpus, or a collection of tables. This paper addresses
the novel issue of jointly tapping into all of these together, this way
boosting answer coverage and confidence. We present CONVINSE, an end-to-end
pipeline for ConvQA over heterogeneous sources, operating in three stages: i)
learning an explicit structured representation of an incoming question and its
conversational context, ii) harnessing this frame-like representation to
uniformly capture relevant evidences from KB, text, and tables, and iii)
running a fusion-in-decoder model to generate the answer. We construct and
release the first benchmark, ConvMix, for ConvQA over heterogeneous sources,
comprising 3000 real-user conversations with 16000 questions, along with entity
annotations, completed question utterances, and question paraphrases.
Experiments demonstrate the viability and advantages of our method, compared to
state-of-the-art baselines.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022-04-252022
 Publikationsstatus: Online veröffentlicht
 Seiten: 12 p.
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 2204.11677
URI: https://arxiv.org/abs/2204.11677
BibTex Citekey: Christmann2204.11677
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: