English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Primary radiation damage in bone evolves via collagen destruction by photoelectrons and secondary emission self-absorption

Sauer, K., Zizak, I., Forien, J.-B., Rack, A., Scoppola, E., & Zaslansky, P. (2022). Primary radiation damage in bone evolves via collagen destruction by photoelectrons and secondary emission self-absorption. Nature Communications, 13: 7829. doi:10.1038/s41467-022-34247-z.

Item is

Files

show Files
hide Files
:
Article.pdf (Publisher version), 4MB
Name:
Article.pdf
Description:
-
OA-Status:
Gold
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Sauer, Katrein, Author
Zizak, Ivo, Author
Forien, Jean-Baptiste, Author
Rack, Alexander, Author
Scoppola, Ernesto1, Author                 
Zaslansky, Paul, Author
Affiliations:
1Wolfgang Wagermaier, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863296              

Content

show
hide
Free keywords: -
 Abstract: X-rays are invaluable for imaging and sterilization of bones, yet the resulting ionization and primary radiation damage mechanisms are poorly understood. Here we monitor in-situ collagen backbone degradation in dry bones using second-harmonic-generation and X-ray diffraction. Collagen breaks down by cascades of photon-electron excitations, enhanced by the presence of mineral nanoparticles. We observe protein disintegration with increasing exposure, detected as residual strain relaxation in pre-stressed apatite nanocrystals. Damage rapidly grows from the onset of irradiation, suggesting that there is no minimal ‘safe’ dose that bone collagen can sustain. Ionization of calcium and phosphorous in the nanocrystals yields fluorescence and high energy electrons giving rise to structural damage that spreads beyond regions directly illuminated by the incident radiation. Our findings highlight photoelectrons as major agents of damage to bone collagen with implications to all situations where bones are irradiated by hard X-rays and in particular for small-beam mineralized collagen fiber investigations.

Details

show
hide
Language(s): eng - English
 Dates: 2022-12-202022
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1038/s41467-022-34247-z
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Communications
  Abbreviation : Nat. Commun.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Nature Publishing Group
Pages: - Volume / Issue: 13 Sequence Number: 7829 Start / End Page: - Identifier: ISSN: 2041-1723