Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  In situ synthesis of MXene with tunable morphology by electrochemical etching of max phase prepared in molten salt

Liu, L., Zschiesche, H., Antonietti, M., Gibilaro, M., Chamelot, P., Massot, L., et al. (2023). In situ synthesis of MXene with tunable morphology by electrochemical etching of max phase prepared in molten salt. Advanced Energy Materials, 13(7): 2203805. doi:10.1002/aenm.202203805.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Article.pdf (Verlagsversion), 2MB
Name:
Article.pdf
Beschreibung:
-
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Liu, Liyuan, Autor
Zschiesche, Hannes1, Autor           
Antonietti, Markus2, Autor                 
Gibilaro, Mathieu, Autor
Chamelot, Pierre, Autor
Massot, Laurent, Autor
Rozier, Patrick, Autor
Taberna, Pierre-Louis, Autor
Simon, Patrice, Autor
Affiliations:
1Nadezda V. Tarakina, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2522693              
2Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863321              

Inhalt

einblenden:
ausblenden:
Schlagwörter: electrochemical etching; Li-ion batteries; MAX; molten salts approach; MXenes
 Zusammenfassung: MXenes, a rapidly growing family of 2D transition metal carbides, carbonitrides, and nitrides, are one of the most promising high-rate electrode materials for energy storage. Despite the significant progress achieved, the MXene synthesis process is still burdensome, involving several procedures including preparation of MAX, etching of MAX to MXene, and delamination. Here, a one-pot molten salt electrochemical etching (E) method is proposed to achieve Ti<sub>2</sub>C MXene directly from elemental substances (Ti, Al, and C), which greatly simplifies the preparation process. In this work, different carbon sources, such as carbon nanotubes (CNT) and reduced graphene oxide (rGO), are reacted with Ti and Al micro-powders to prepare Ti<sub>2</subAlC MAX with 1D and 2D tuned morphology followed by in situ electrochemical etching from Ti<sub>2</subAlC MAX to Ti<sub>2</sub>CT<sub>x</sub> MXene in low-cost LiCl-KCl. The introduction of the O surface group via further ammonium persulfate (APS) treatment can act in concert with Cl termination to activate the pseudocapacitive redox reaction of Ti<sub>2</sub>CClyOz in the non-aqueous electrolyte, resulting in a Li<sup>+</sup> storage capacity of up to 857 C g<sup>−1</sup> (240 mAh g<sup>−1</sup>) with a high rate (86 mAh g<sup>−1</sup> at 120 C) capability, which makes it promising for use as an anode material for fast-charging batteries or hybrid devices in a non-aqueous energy storage application.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022-12-302023
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1002/aenm.202203805
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Advanced Energy Materials
  Kurztitel : Adv. Energy Mater.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Weinheim : Wiley-VCH
Seiten: - Band / Heft: 13 (7) Artikelnummer: 2203805 Start- / Endseite: - Identifikator: ISSN: 1614-6832