hide
Free keywords:
NSI, neutrino mass, radiative mechanism
Abstract:
I present a comprehensive analysis of neutrino non-standard interactions (NSI) generated by new scalars in radiative neutrino mass models. To this end, I propose a new nomenclature for classifying radiative neutrino mass models: those containing at least one SM particle in the loop are designated as type-I radiative models, while those without SM particles in the loop are designated as type-II radiative models. In terms of NSI, type-I radiative models are the most intriguing, since the neutrino couples directly to an SM fermion (matter field) and a new scalar, creating NSI at the tree level, in contrast to type-II radiative models. I summarized the maximum possible NSI in all type-I radiative models after accounting for numerous theoretical and experimental restrictions. Additionally, I demonstrate that using light charged scalars in radiative models can result in a Glashow-like resonance feature in the UHE neutrino event spectrum at the IceCube neutrino observatory and its high-energy upgrade IceCube-Gen2, which can probe a sizable fraction of the allowed NSI parameter space. This talk is based on results obtained with K.S. Babu, Bhupal Dev, Anil Thapa and Yicong Sui and presented in hep-ph 1907.09498 and 1908.02779.