Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  The dark energy survey 5-yr photometrically identified type Ia supernovae

Möller, A., Smith, M., Sako, M., Sullivan, M., Vincenzi, M., Wiseman, P., et al. (2022). The dark energy survey 5-yr photometrically identified type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 514(4), 5159-5177. doi:10.1093/mnras/stac1691.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Dateien

ausblenden: Dateien
:
The dark energy survey 5-yr photometrically identified type Ia supernovae.pdf (beliebiger Volltext), 3MB
 
Datei-Permalink:
-
Name:
The dark energy survey 5-yr photometrically identified type Ia supernovae.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Möller, A., Autor
Smith, M., Autor
Sako, M., Autor
Sullivan, M., Autor
Vincenzi, M., Autor
Wiseman, P., Autor
Armstrong, P., Autor
Asorey, J., Autor
Brout, D., Autor
Carollo, D., Autor
Davis, T. M., Autor
Frohmaier, C., Autor
Galbany, L., Autor
Glazebrook, K., Autor
Kelsey, L., Autor
Kessler, R., Autor
Lewis, G. F., Autor
Lidman, C., Autor
Malik, U., Autor
Nichol, R. C., Autor
mehr..
Affiliations:
1Optical and Interpretative Astronomy, MPI for Extraterrestrial Physics, Max Planck Society, ou_159895              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: As part of the cosmology analysis using Type Ia Supernovae (SN Ia) in the Dark Energy Survey (DES), we present photometrically identified SN Ia samples using multiband light curves and host galaxy redshifts. For this analysis, we use the photometric classification framework SuperNNovatrained on realistic DES-like simulations. For reliable classification, we process the DES SN programme (DES-SN) data and introduce improvements to the classifier architecture, obtaining classification accuracies of more than 98 per cent on simulations. This is the first SN classification to make use of ensemble methods, resulting in more robust samples. Using photometry, host galaxy redshifts, and a classification probability requirement, we identify 1863 SNe Ia from which we select 1484 cosmology-grade SNe Ia spanning the redshift range of 0.07 < z < 1.14. We find good agreement between the light-curve properties of the photometrically selected sample and simulations. Additionally, we create similar SN Ia samples using two types of Bayesian Neural Network classifiers that provide uncertainties on the classification probabilities. We test the feasibility of using these uncertainties as indicators for out-of-distribution candidates and model confidence. Finally, we discuss the implications of photometric samples and classification methods for future surveys such as Vera C. Rubin Observatory Legacy Survey of Space and Time.

Details

ausblenden:
Sprache(n):
 Datum: 2022-06-20
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1093/mnras/stac1691
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Monthly Notices of the Royal Astronomical Society
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 514 (4) Artikelnummer: - Start- / Endseite: 5159 - 5177 Identifikator: -