日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  High Cationic Dispersity Boosted Oxygen Reduction Reactivity in Multi-Element Doped Perovskites

Li, W., Li, M., Guo, Y., Hu, Z., Zhou, C., Brand, H. E. A., Peterson, V. K., Pao, C.-W., Lin, H.-J., Chen, C.-T., Zhou, W., & Shao, Z. (2023). High Cationic Dispersity Boosted Oxygen Reduction Reactivity in Multi-Element Doped Perovskites. Advanced Functional Materials, 33(1):, pp. 1-8. doi:10.1002/adfm.202210496.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-000C-38A6-A 版のパーマリンク: https://hdl.handle.net/21.11116/0000-000C-38FF-7
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Li, Wenhuai1, 著者
Li, Mengran1, 著者
Guo, Yanan1, 著者
Hu, Zhiwei2, 著者           
Zhou, Chuan1, 著者
Brand, Helen E. A.1, 著者
Peterson, Vanessa K.1, 著者
Pao, Chih-Wen1, 著者
Lin, Hong-Ji1, 著者
Chen, Chien-Te1, 著者
Zhou, Wei1, 著者
Shao, Zongping1, 著者
所属:
1External Organizations, ou_persistent22              
2Zhiwei Hu, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863461              

内容説明

表示:
非表示:
キーワード: Electrolytic reduction; Entropy; Functional materials; Kinetics; Oxygen vacancies; Positive ions; Solid oxide fuel cells (SOFC); X ray absorption spectroscopy, Cationics; Co-doping; Configuration entropy; Highest temperature; Local cation arrangement; Oxygen kinetics; Oxygen Reduction; Oxygen reduction reaction; Perovskite oxides; Solid-oxide fuel cell, Perovskite
 要旨: Oxygen-ion conducting perovskite oxides are important functional materials for solid oxide fuel cells and oxygen-permeable membranes operating at high temperatures (gt;500 °C). Co-doped perovskites have recently shown their potential to boost oxygen-related kinetics, but challenges remain in understanding the underlying mechanisms. This study unveils the local cation arrangement as a new key factor controlling oxygen kinetics in perovskite oxides. By single- and co-doping Nb5+ and Ta5+ into SrCoO3-δ, dominant factors affecting oxygen kinetics, such as lattice geometry, cobalt states, and oxygen vacancies, which are confirmed by neutron and synchrotron X-ray diffraction as well as high-temperature X-ray absorption spectroscopy, are controlled. The combined experimental and theoretical study unveils that co-doping likely leads to higher cation dispersion at the B-site compared to single-doping. Consequently, a high-entropy configuration enhances oxygen ion migration in the lattice, translating to improved oxygen reduction activity. © 2022 Wiley-VCH GmbH.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2023-01-232023-01-23
 出版の状態: 出版
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): DOI: 10.1002/adfm.202210496
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Advanced Functional Materials
  省略形 : Adv. Funct. Mater.
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: Weinheim : Wiley-VCH Verlag GmbH
ページ: - 巻号: 33 (1) 通巻号: 2210496 開始・終了ページ: 1 - 8 識別子(ISBN, ISSN, DOIなど): ISSN: 1616-301X
CoNE: https://pure.mpg.de/cone/journals/resource/954925596563