English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Pedigree-based Bayesian modelling of radiocarbon dates

Massy, K., Friedrich, R., Mittnik, A., & Stockhammer, P. W. (2022). Pedigree-based Bayesian modelling of radiocarbon dates. PLoS One, 17: e0270374. doi:10.1371/journal.pone.0270374.

Item is

Files

show Files
hide Files
:
Massey_Pedigree-based_PloSOne_2022.pdf (Publisher version), 10MB
Name:
Massey_Pedigree-based_PloSOne_2022.pdf
Description:
-
OA-Status:
Gold
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2022
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Massy, Ken, Author
Friedrich, Ronny, Author
Mittnik, Alissa, Author
Stockhammer, Philipp W.1, Author                 
Affiliations:
1MHAAM, Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Max Planck Society, ou_3390638              

Content

show
hide
Free keywords: -
 Abstract: Within the last decade, archaeogenetic analysis has revolutionized archaeological research and enabled novel insights into mobility, relatedness and health of past societies. Now, it is possible to develop these results further and integrate archaeogenetic insights into biological relatedness with radiocarbon dates as means of chronologically sequenced information. In our article, we demonstrate the potential of combining relative chronological information with absolute radiocarbon dates by Bayesian interpretation in order to improve age determinations. Using artificial pedigrees with four sets of simulated radiocarbon dates we show that the combination of relationship information with radiocarbon dates improves the age determination in many cases at least between 20 to 50%. Calibrated age ranges are more constrained than simply calibrating radiocarbon ages independently from each other. Thereby, the precision of modelled ages depends on the precision of the single radiocarbon dates, the number of modelled generations, the shape of the calibration curve and the availability of samples that can be precisely fixed in time due to specific patterns in the calibration curve (“anchor points”). Ambiguous calibrated radiocarbon dates, which are caused by inversions of the calibration curve, can be partly or almost entirely resolved through Bayesian modelling based upon information from pedigrees. Finally, we discuss selected case studies of biological pedigrees achieved for Early Bronze Age Southern Germany by recent archaeogenetic analysis, whereby the sites and pedigrees differ with regard to the quality of information, which can be used for a Bayesian model of the radiocarbon dates. In accordance with the abstract models, radiocarbon dates can again be better constrained and are therefore more applicable for archaeological interpretation and chronological placement of the dated individuals.

Details

show
hide
Language(s): eng - English
 Dates: 2022-06-30
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1371/journal.pone.0270374
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: PLoS One
  Abbreviation : PLoS One
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: San Francisco, CA : Public Library of Science
Pages: - Volume / Issue: 17 Sequence Number: e0270374 Start / End Page: - Identifier: ISSN: 1932-6203