日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Systems Biology of Aromatic Compound Catabolism in Facultative Anaerobic Aromatoleum aromaticum EbN1(T)

Becker, P., Kirstein, S., Wunsch, D., Koblitz, J., Buschen, R., Wohlbrand, L., Bunk, B., Hinrichs, C., Kaltenhauser, S., Lehmann, J., Martens, G., Ripken, B. K., Riemer, S. A., Stoltenberg, P., Thies, D., Trautwein, K., Wenzel V, E., Schomburg, I., Winklhofer, M., Schomburg, D., Neumann-Schaal, M., & Rabus, R. (2022). Systems Biology of Aromatic Compound Catabolism in Facultative Anaerobic Aromatoleum aromaticum EbN1(T). MSYSTEMS. doi:10.1128/msystems.00685-22.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-000C-76AB-F 版のパーマリンク: https://hdl.handle.net/21.11116/0000-000C-76AC-E
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
msystems.00685-22.pdf (出版社版), 5MB
ファイルのパーマリンク:
https://hdl.handle.net/21.11116/0000-000C-76AD-D
ファイル名:
msystems.00685-22.pdf
説明:
-
OA-Status:
Not specified
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Becker, Patrick1, 著者
Kirstein, Sarah1, 著者
Wunsch, Daniel1, 著者
Koblitz, Julia1, 著者
Buschen, Ramona1, 著者
Wohlbrand, Lars1, 著者
Bunk, Boyke1, 著者
Hinrichs, Christina1, 著者
Kaltenhauser, Sabine1, 著者
Lehmann, Jochen1, 著者
Martens, Gesa1, 著者
Ripken, Britta Katrin1, 著者
Riemer, S. Alexander1, 著者
Stoltenberg, Philipp1, 著者
Thies, Daniela2, 著者           
Trautwein, Kathleen3, 著者           
Wenzel V, Esther1, 著者
Schomburg, Ida1, 著者
Winklhofer, Michael1, 著者
Schomburg, Dietmar1, 著者
Neumann-Schaal, Meina1, 著者Rabus, Ralf1, 著者 全て表示
所属:
1external, ou_persistent22              
2Research Group Archaeal Virology, Max Planck Institute for Marine Microbiology, Max Planck Society, ou_3282403              
3Department of Microbiology, Max Planck Institute for Marine Microbiology, Max Planck Society, ou_2481695              

内容説明

表示:
非表示:
キーワード: -
 要旨: Members of the genus Aromatoleum thrive in diverse habitats and use a broad range of recalcitrant organic molecules coupled to denitrification or O-2 respiration. To gain a holistic understanding of the model organism A. aromaticum EbN1(T), we studied its catabolic network dynamics in response to 3-(4-hydroxyphenyl)propanoate, phenylalanine, 3-hydroxybenzoate, benzoate, and acetate utilized under nitrate-reducing versus oxic conditions. Integrated multi-omics (transcriptome, proteome, and metabolome) covered most of the catabolic network (199 genes) and allowed for the refining of knowledge of the degradation modules studied. Their substrate-dependent regulation showed differing degrees of specificity, ranging from high with 3-(4-hydroxyphenyl)propanoate to mostly relaxed with benzoate. For benzoate, the transcript and protein formation were essentially constitutive, contrasted by that of anoxia-specific versus oxia-specific metabolite profiles. The matrix factorization of transcriptomic data revealed that the anaerobic modules accounted for most of the variance across the degradation network. The respiration network appeared to be constitutive, both on the transcript and protein levels, except for nitrate reductase (with narGHI expression occurring only under nitrate-reducing conditions). The anoxia/nitrate-dependent transcription of denitrification genes is apparently controlled by three FNR-type regulators as well as by NarXL (all constitutively formed). The resequencing and functional reannotation of the genome fostered a genome-scale metabolic model, which is comprised of 655 enzyme-catalyzed reactions and 731 distinct metabolites. The model predictions for growth rates and biomass yields agreed well with experimental stoichiometric data, except for 3-(4-hydroxyphenyl)propanoate, with which 4-hydroxybenzoate was exported. Taken together, the combination of multi-omics, growth physiology, and a metabolic model advanced our knowledge of an environmentally relevant microorganism that differs significantly from other bacterial model strains.
IMPORTANCE Aromatic compounds are abundant constituents not only of natural organic matter but also of bulk industrial chemicals and fuel components of environmental concern. Considering the widespread occurrence of redox gradients in the biosphere, facultative anaerobic degradation specialists can be assumed to play a prominent role in the natural mineralization of organic matter and in bioremediation at contaminated sites. Surprisingly, differential multi-omics profiling of the A. aromaticum EbN1(T) studied here revealed relaxed regulatory stringency across its four main physiological modi operandi (i.e., O-2-independent and O-2-dependent degradation reactions versus denitrification and O-2 respiration). Combining multi-omics analyses with a genome-scale metabolic model aligned with measured growth performances establishes A. aromaticum EbN1(T) as a systems-biology model organism and provides unprecedented insights into how this bacterium functions on a holistic level. Moreover, this experimental platform invites future studies on eco-systems and synthetic biology of the environmentally relevant betaproteobacterial Aromatoleum/Azoarcus/Thauera cluster.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2022-12
 出版の状態: オンラインで出版済み
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): ISI: 000891964200001
DOI: 10.1128/msystems.00685-22
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: MSYSTEMS
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: - 通巻号: - 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): ISSN: 2379-5077