English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Number of Nuclear Divisions in the Drosophila Blastoderm Controlled by Onset of Zygotic Transcription

Sung, H.-W., Spangenberg, S., Vogt, N., & Großhans, J. (2013). Number of Nuclear Divisions in the Drosophila Blastoderm Controlled by Onset of Zygotic Transcription. Current Biology, 23(2), 133-138. doi:10.1016/j.cub.2012.12.013.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Sung, H-W, Author
Spangenberg, S, Author
Vogt, N1, Author                 
Großhans, J, Author                 
Affiliations:
1Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society, ou_3375716              

Content

show
hide
Free keywords: -
 Abstract: The cell number of the early Drosophila embryo is determined by exactly 13 rounds of synchronous nuclear divisions, allowing cellularization and formation of the embryonic epithelium. The pause in G2 in cycle 14 is controlled by multiple pathways, such as activation of DNA repair checkpoint, progression through S phase, and inhibitory phosphorylation of Cdk1, involving the genes grapes, mei41, and wee1. In addition, degradation of maternal RNAs and zygotic gene expression are involved. The zinc finger Vielfältig (Vfl) controls expression of many early zygotic genes, including the mitotic inhibitor frühstart. The functional relationship of these pathways and the mechanism for triggering the cell-cycle pause have remained unclear. Here, we show that a novel single-nucleotide mutation in the 3' UTR of the RNPII215 gene leads to a reduced number of nuclear divisions that is accompanied by premature transcription of early zygotic genes and cellularization. The reduced number of nuclear divisions in mutant embryos depends on the transcription factor Vfl and on zygotic gene expression, but not on grapes, the mitotic inhibitor Frühstart, and the nucleocytoplasmic ratio. We propose that activation of zygotic gene expression is the trigger that determines the timely and concerted cell-cycle pause and cellularization.

Details

show
hide
Language(s):
 Dates: 2013-01
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1016/j.cub.2012.12.013
PMID: 23290555
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Current Biology
  Abbreviation : Curr. Biol.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London, UK : Cell Press
Pages: - Volume / Issue: 23 (2) Sequence Number: - Start / End Page: 133 - 138 Identifier: ISSN: 0960-9822
CoNE: https://pure.mpg.de/cone/journals/resource/954925579107